
c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 2
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ier . com/ loca te /cose
Modeling vulnerability discovery process in Apache and
IIS HTTP servers
Sung-Whan Woo, HyunChul Joh*, Omar H. Alhazmi, Yashwant K. Malaiya

Computer Science Department, Colorado State University, 1873 Campus Delivery, Fort Collins, CO 80523-1873, USA
a r t i c l e i n f o

Article history:

Received 29 April 2010

Received in revised form

18 August 2010

Accepted 18 October 2010

Keywords:

Vulnerability discovery

model (VDM)

Risk evaluation

Web server

Quantitative modeling

Security
* Corresponding author. Tel.: þ1 970 491 105
E-mail addresses: woo@cs.colostate.edu

Alhazmi), malaiya@cs.colostate.edu (Y.K. Ma
0167-4048/$ e see front matter ª 2010 Elsev
doi:10.1016/j.cose.2010.10.007
a b s t r a c t

Vulnerability discovery models allow prediction of the number of vulnerabilities that are

likely to be discovered in the future. Hence, they allow the vendors and the end users to

manage risk by optimizing resource allocation. Most vulnerability discovery models

proposed use the time as an independent variable. Effort-based modeling has also been

proposed, which requires the use of market share data. Here, the feasibility of character-

izing the vulnerability discovery process in the two major HTTP servers, Apache and IIS, is

quantitatively examined using both time and effort-based vulnerability discovery models,

using data spanning more than a decade. The data used incorporates the effect of software

evolution for both servers. In addition to aggregate vulnerabilities, different groups of

vulnerabilities classified using both the error types and severity levels are also examined.

Results show that the selected vulnerability discovery models of both types can fit the data

of the two HTTP servers very well. Results also suggest that separate modeling for an

individual class of vulnerabilities can be done. In addition to the model fitting, predictive

capabilities of the two models are also examined. The results demonstrate the applicability

of quantitative methods to widely-used products, which have undergone evolution.

ª 2010 Elsevier Ltd. All rights reserved.
1. Introduction servers) and browsers, which serves as clients. Both compo-
There has been considerable discussion of Web server secu-

rity in recent years. However, much of this has been qualita-

tive, often focused on detection and prevention of individual

vulnerabilities. Quantitative data is sometimes cited, but

frequently without any significant critical analysis. Methods

need to be developed to allow security related risks to be

evaluated quantitatively in a systematic manner. A study by

Ford et al. (2005) compares several software venders by

considering the number of vulnerabilities and severity, and

suggests a need to use quantitative approaches for estimating

the risks posed by vulnerabilities.

Two of the major software components of the Internet are

HTTP (Hyper Text Transfer Protocol) servers (also termedWeb
6; fax: þ1 970 491 2466.
(S.-W. Woo), dean2026
laiya).
ier Ltd. All rights reserve
nents were introduced in 1991 by Tim Berners-Lee of CERN

(2010). They have now become indispensable parts of both

organizational and personal interactions. The early Web

servers provided information using static HTML pages. The

Web servers now provide dynamic and interactive services to

the clients using database queries, executable script, etc. Web

servers can support functions such as serving streaming

media, email, etc. In the emerging cloud computing systems,

the HTTP servers support virtual implementations of appli-

cations and operating systems. HTTP servers have thus

emerged as a focal point for the Internet.

Here the vulnerabilities in the two most widely-used HTTP

servers are examined, the Apache Web server introduced in

1995, and the Microsoft Internet Information Services (IIS)
@cs.colostate.edu (HyunChul Joh), omar@cs.colostate.edu (O.H.

d.

mailto:woo@cs.colostate.edu
mailto:dean2026@cs.colostate.edu
mailto:omar@cs.colostate.edu
mailto:malaiya@cs.colostate.edu
http://www.sciencedirect.com
http://www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

Table 1 e Functional support comparison (IIS vs. Apache,
2010).

Feature IIS Apache

ASP Native With Chilisoft,

Apache::ASP,

or modmono

Active directory authentication Yes With third-party

modules

Live configuration editing Yes No

CGI, Perl, Python, PHP, JSP Yes Yes

Runs under Windows Yes Yes

Runs under Linux, Unix, OS X No Yes

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 2 51
Web server, originally supplied as part of the NT operating

systems in 1995e1996. Fig. 1 shows the major versions’

timeline for the two Web servers. While Apache has a much

larger overall market share, roughly 55% on March 2010, IIS

may have a higher share of the corporate Websites. The

market share for other servers is very small, and thus they are

not examined here. IIS is the only major HTTP server that is

not open source. Both Apache and IIS are generally compa-

rable in features. IIS runs only under the Windows operating

systems and comes bundled with some of the versions,

whereas Apache supports all the major operating systems.

Table 1 gives a brief functional comparison between the two.

The security of systems connected to the Internet depends

on several components of the system. These include the

operating systems, HTTP servers and browsers. Some of the

major security compromises arise because of vulnerabilities in

theHTTPservers.Avulnerability isdefinedasa softwaredefect

or weakness in the security system which might be exploited

by amalicious user causing loss or harm (Pfleeger and Pfleeger,

2003). The vulnerabilities found are disclosed by the finders

using some of the common reporting mechanisms available

in the field. The databases for the vulnerabilities are main-

tained by several organizations such as National Vulnerability
Fig. 1 e Version release timeline for Apache and IIS.
Database (NVD, 2010), Open Source Vulnerability Database

(OSVDB, 2010), BugTraq (Securityfocus, 2010), etc., as well as

the vendors of the software. The exploitations of some of the

server vulnerabilities are well known. The Code Red worm

(Moore et al., 2002), which exploited a vulnerability in IIS

(described in Microsoft Security Bulletin MS01-033, June 18,

2001), appearedon July13, 2001, andsoonspreadworld-wide in

unpatched systems.

All the computing systems connected to the network are

subjects to some security risk. While there have been many

studies attempting to identify causes of vulnerabilities and

potential countermeasures, the development of systematic

quantitative methods to characterize security have begun

only recently. There has been considerable debate comparing

the security attributes of open source and proprietary soft-

ware (Anderson, 2002). However, for a careful interpretation of

the data, rigorous quantitative modeling methods are needed.

The likelihood of a systembeing compromised depends on the

probability that a newly discovered vulnerability will be

exploited. Thus, the risk is better represented by the vulner-

abilities which are not yet discovered and the vulnerability

discovery rate rather than by the vulnerabilities that have

been already discovered in the past and remedied by patches.

Possible approaches for a quantitative perspective of

exploitation trends are discussed by Hallberg et al. (2001).

Probabilistic examinations of intrusions have been presented

by several researchers (Browne et al., 2001; Madan et al., 2004).

Rescorla (2005) has studied vulnerabilities in open source

servers. The vulnerability discovery process in operating

systems has recently been examined by Rescorla (2003) and by

Alhazmi and Malaiya (2005a,b, 2008).

HTTP servers are very attractive targets for malicious

attackers. The servers can represent the first line of defense

that, if bypassed, can compromise the integrity, confidenti-

ality and availability attributes of the enterprise security.

Thus, it is essential to understand the threat posed by both

undiscovered vulnerabilities and recently discovered vulner-

abilities for which patches have not been developed or

applied. Despite the significance of security in the HTTP

servers, only limited work has been done related to the

vulnerability discovery process for the servers (Woo et al.,

2006; Alvarez and Petrovic, 2003). Such work would permit

the developers and the users to better estimate future

vulnerability discovery rates. It would also be highly desirable

to be able to project what types of vulnerabilities are more

likely to be discovered.

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 252
Some of the availablework onHTTP servers discusses some

specificproblemsorattacks that theservers face, suchasdenial

of service attacks (DoS) (Aura et al., 2000; Kargl et al., 2001), in

which theauthors suggest somecountermeasures tobeapplied

when attacks for these types take place. Here, our focus is the

discovery rates of vulnerabilities in the two most popular

servers, which have undergone significant evolution. Unlike

some of the recent studies on the discovery rates in specific

operating systems (Alhazmi and Malaiya, 2008), complete data

for all the versions of the two servers is examined here. This is

an extension of the work reported in Woo et al. (2006).

This paper is organized as follows. The next section

introduces the vulnerability discovery models used and

discusses the significant factors that affect software vulnera-

bility discovery rates. In Section 3, we consider the aggregate

vulnerabilities in the two HTTP servers and examine how the

models fit the available data. In Section 4, the datasets are

partitioned into categories based on the causes of vulnera-

bilities, and the applicability of the models to individual

categories is considered. In the next section, the vulnerabil-

ities are divided based on the severity levels and the fit is again

evaluated. In Section 6, we examine the predictive capabilities

of the models using the available datasets. Finally, the major

observations are discussed and the conclusion is presented.
2. Vulnerability discovery models

Use of quantitative reliability growth models is now common

in the software reliability engineering (Musa, 1999; Lyu, 1995).

Software reliability growth models (SRGM) model the testing

process when as bugs are found and removed, fewer bugs

remain. The bug finding rate gradually drops and the cumu-

lative number of bugs eventually approaches saturation. Such

growthmodels are used to determinewhen a software system

is ready to be released and what future failure rates can be

expected.

The Vulnerability Discovery Models (VDM) can be regarded

to be related to the reliability growth models since vulnera-

bilities are a special class of defects or bugs that can permit

circumvention of the security measures. Some vulnerability

discoverymodels were proposed by Anderson (2002), Rescorla

(2003), Alhazmi and Malaiya (2005a,b), and Joh et al. (2008).

Most of these models give the cumulative number of vulnera-

bility by calendar time.Thesemodels are classifiedas the time-

based models.

The time-based models consider calendar time as the

independent variable. These models incorporate the effect of
Fig. 2 e Vulnerability d
the rising and declining market share on the software. The

other models referred to as the effort-based models, require

explicit estimation of the effort using an effort function,

which is then used as an independent variable. Fig. 2 shows

the classification of vulnerability discovery models. Vulnera-

bility discovery models are separated into the time-based

model and effort-based model. The time-based model uses

calendar time as the main factor and the effort-based model

uses the number of installed system as the main factor.

Examples of the time-based models are the AlhazmieMalaiya

Logistic (AML) Model, Anderson Thermodynamic Model,

Weibull model, Rescorla Exponential Model and Logarithmic

Poisson Model (Alhazmi and Malaiya, 2008; Joh et al., 2008).

The applicability of these models to several operating

systems was examined in Alhazmi and Malaiya (2005a,b). The

results indicate that while some of the models fit the data for

most operating systems well, others do not fit well or just

provide a good fit only during a specific phase. Here the

applicability of the two most successful models for HTTP

servers is investigated. The models used here are the logistic

time-based model and the effort-based model proposed by

Alhazmi and Malaiya (2005a,b). These two models have been

found to fit datasets of the major Windows and Linux oper-

ating systems, as determined by goodness of fit and other

measures (Alhazmi andMalaiya, 2008; Alhazmi et al., 2007). In

the discussion below the AlhazmieMalaiya Logistic Model is

referred to as the time-based model, and AlhazmieMalaiya

effort-based model is termed the effort-based model. Several

time-based models have been proposed, however the Alhaz-

mieMalaiya Logistic Model has selected for analysis and

comparison here since it has generally provided a better fit

compared with other models (Alhazmi and Malaiya, 2008).

The effort-based model has been selected because it is the

only model proposed in the literature that uses effort instead

of time. The two models contrast two different approaches.

The AlhazmieMalaiya logistic model: This time-based

model assumes that the rate of change of the cumulative

number of vulnerabilities U is governed by two factors, as

given in Equation (1) below (Alhazmi and Malaiya, 2005a,b).

The second factor on the right hand side declines as the

number of remaining undetected vulnerabilities declines.

The other factor increases with the time needed to take into

account the rising share of the installed base. The saturation

effect is modeled by the second factor. It is possible to

obtain a more detailed model. However, this model provides

a good fit to the data, as observed below. The model

assumes that the vulnerability discovery rate is given by the

differential equation
iscovery models.

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 2 53
dU
dt

¼ AUðB� UÞ (1)

where U is the cumulative number of vulnerabilities, t is the

calendar time, and initially t ¼ 0. A and B are empirical

constants determined from the recorded data. By solving the

differential equation, the following equation is obtained:

UðtÞ ¼ B
BCe�ABt þ 1

(2)

where C is a constant introduced while solving Equation (1).

Equation (2) gives us a three-parameter model given by the

logistic function. In Equation (2), as t approaches infinity, U

approaches B. Thus, the parameter B represents the total

number of accumulated vulnerabilities that will eventually be

found.

An S-shaped curve can be plotted using Equation (2). Fig. 3

shows hypothetical plot for the time-based model, which is

determined by the values of A, B and C. The two transition

points 1 and 2 in the figure can be obtained by equating the

second derivative of Equation (2) to zero (Alhazmi and

Malaiya, 2006). The two transition points separate the three

phases: the learning phase from the release of the system

until the first transition point. After the learning phase,

a linear phase is observed from the first transition point to the

second transition point. The last phase reflects decreasing

vulnerability discovery rate that results in saturation. In the

first phase, the cumulative number of vulnerabilities shows

an increasing rate at the beginning as the system begins to

attract an increasing share of the installed base. After some

time, there is a steady rate of vulnerability discovery, which

yields a linear trend. Eventually, as the vulnerability discovery

rate begins to drop, there is saturation. It can be due to

a smaller pool of remaining vulnerabilities, or reduced

vulnerability finding effort when the attention has been

diverted to a newer product.

The originalmodel derivation assumed that the software is

stable (Alhazmi and Malaiya, 2005a,b). However, in this case it

is being applied to software that has evolved for several years.

Software evolution is the process that describes a gradually

changing software system. It has been suggested that the
Fig. 3 e AML time-based model.
software evolution affects the S-shape of the time-based

model since new vulnerabilities may get introduced along

with the new version of software in the process of evolution.

Kim et al. (2007) have considered the impact of software

evolution and have suggested that the S-shaped model may

still apply while the significance of parameters may change.

They have proposed a model that can be applied to two or

more successive versions of an evolving software, provided

the difference between any two successive versions can be

determined. In practice this would require the source codes

for each pair of successive versions to be manually examined

since not only additions, deletions and changes to the code

can occur, but the sections of the same code may get reor-

ganized. In addition, the commercial software systems are

generally closed-source. However in many cases, a simple

unimodal time-base model may still apply, when modeling

involves a sufficiently long period such that shorter term

variations are of minor significance.

The AlhazmieMalaiya effort-based model: Vulnerabilities are

usually reported using calendar time, because it is easy to

record and link them to the time of discovery. This, however,

does not consider the changes occurring in the environment

during the lifetime of the system. A major environmental

factor is the number of installations, which depends on the

share of the installed base of the specific system. It is much

more rewarding to find or exploit vulnerabilities that exist in

a large number of computers. Hence, it can be expected that

a larger share of the effort going into the discovery of

vulnerabilities, both internal and external, would go toward

a system with a larger installed base.

Using effort as a factor was first discussed in Alhazmi and

Malaiya (2005a,b). It is based on the assumption that the

vulnerability finding effort is proportional to actual usage, as

given by the total number of installed systems. The effort-

based model utilizes a measure termed an equivalent effort (E),

which is calculated using (Woo et al., 2006)

E ¼
Xn

i¼0

ðUi � PiÞ ¼
Xn

i¼0

Ni (3)

where Ui is the total number of installations of the HTTP

servers at the period of time i (Netcraft, 2010), n represents the

last usage period, and Pi is the percentage of the servers using

the specific software for measuring E. Ni is the number of

machines running the specific server during time i. The result

is obtained in terms of system-months. ThemeasureUi can be

calculated using the data about total number of web servers.

Equivalent effort reflects the effort that would have gone into

finding vulnerabilities more accurately than using time alone.

This is somewhat analogous to using CPU time for SRGMs

(Musa, 1999).

If the vulnerability detection rate with respect to the effort

is proportional to the fraction of remaining vulnerabilities,

then an exponential model like the exponential SRGM can be

applied. This model can be expressed as follows:

UðEÞ ¼ B
�
1� e�lvuE

�
(4)

where lvu is a parameter analogous to failure intensity in the

SRGMsandB isanotherparameterwhichrepresents thenumber

of vulnerabilities thatwill eventually be found. Themodel given

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 254
byEquation (4)will bereferredas theeffort-basedmodel.Several

factors impact the parameters of the vulnerability discovery

models. These include code size, software age and popularity

examined below.

Code Size of Software: Several studies (Fenton and Rafail,

1990; Hatton, 1997) have examined the relationship between

the code size andnumber of defects. The studies show that the

number of defects or errors increases as code size increases. A

first order approximation assumes a linear relationship,which

allows a measure defect density to be defined. Since the

vulnerabilities are a class of defects, it can be similarly defined

as a measurement called vulnerability density (Alhazmi and

Malaiya, 2005a,b). Available data allows us to calculate the

densities of the discovered vulnerabilities for some of the

major software systems, as given in Section 7.

Software Age: The time-based models model this more

explicitly. In the effort-based model, it would be modeled by

the specific SRGM used.

Market Share: This is modeled more explicitly in the effort-

based model. The effect of the market share rise and fall is

implicit in the AML model.
3. Aggregate vulnerabilities in HTTP server

In this section, the datasets for the total vulnerabilities of the

Apache and IIS Web servers are fitted to the models. The

goodness of fit is evaluated to determine howwell the models

reflect the actual vulnerability discovery process. The

vulnerability datasets, here, are fromNVD. NVD ismaintained

by National Institute of Standards and Technology, and

sponsored by the department of Home Land Security, thus it

can be considered to be a more reliable source. The market

share data from Netcraft (2010) was used. Note that Apache

represents an open source software system, whereas IIS

represents a proprietary closed-source system. In this section,

all vulnerabilities are considered without regard to how they

arise or the extent of their impact.

Market share is one of the most significant factors impact-

ing the effort expended in exploring potential vulnerabilities.

Higher market share indicates more incentive to explore and

exploit vulnerabilities for both exports and non-exports, since

both would find it more profitable or satisfying to spend their

time on a software system with a higher market share.

Table 2 presents data obtained from NVD and Netcraft in

January 2009, showing the current Web server market share

and total number of vulnerabilities found to date. Google Web

server is omitted from the table although its market share is

approximately 5%, because very little information about
Table 2 e Market share and vulnerabilities found.

Web server Apache IIS Nginx Lighttpd Other

Market share 52.26% 32.91% 1.87% 1.61% 11.35%

Vulnerabilities 132 137 0 18 N/A

Release year 1995 1995 2005 2003 N/A

Latest version 2.2.11 7.5 0.6.35 1.4.20 N/A
Google Web server is publically available. For servers with

a lower percentage of the market, such as Google Web server,

Nginx and Lighttpd, the total number of vulnerabilities found

is zero or very few. However, that does not mean that these

systems are more secure, but merely that only limited effort

has gone into finding their vulnerabilities. A significant

number of vulnerabilities has been found in both Apache and

IIS, illustrating the impact of the market share on the moti-

vation for exploring or finding vulnerabilities. Here, the

market share is used as an indicator of effort for the effort-

based model.

Fig. 4 shows the Web server market share for Apache and

IIS. As demonstrated by the figure, the number of Web servers

continues to grow steadily. Among the various Web servers,

Apache and IIS dominate the Web server market. Other Web

servers such as Nginx and Lighttpd occupy a very small share

of the market, as shown in Table 2. Since the total share of all

the Web servers, except Apache and IIS, represents less than

15% of the market share, few vulnerabilities have been found

in them and hence the data for these servers has not been

used here.

There is a marked gap between the Apache and IIS market

shares, as shown in Fig. 4. This difference inmarket sharemay

be due to several factors. Perhaps the most important of these

is that Apache is available for all major operating system

platforms and can be obtained without cost. Apache may also

have benefited from not having been exposed to serious secu-

rity issues such as the Code Red (Moore et al., 2002) or Nimda

worms (Machie et al., 2001) that were faced by IIS in 2001.

Since its release in 1995, Apache HTTP server has achieved

andmaintained a large installed base and was used by over 90

million Web server systems during January 2009. In this

section, the vulnerability dataset for Apache is fitted to the

time-based and the effort-based models. Figs. 5 and 6 give the

vulnerability data from NVD for the period between January

1996 and December 2008. Netcraft provides the market share

data covers this time period.

In Figs. 5 and 6, the solid lines indicate the fitted models,

while the X marks show cumulative vulnerabilities for the

servers. Fig. 5(a) shows cumulative vulnerabilities by month

for the time-based model. The slope of the curve for Apache

rises gently until about January 2000, afterwhich the slope had

remained steady until the end of 2007. From the point of the
Fig. 4 e Web server market share trends.

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

Fig. 5 e Fitting Apache aggregated vulnerability data. (a)

Time-based model; (b) Effort-based model.
Fig. 6 e Fitting IIS aggregated vulnerability data. (a) Time-

based model; (b) Effort-based model.

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 2 55
three phases of the vulnerability discovery process (Alhazmi

and Malaiya, 2005a,b), Apache may be entering the saturation

phase, since only three vulnerabilities were found in 2008.

Fig. 5(b) shows cumulative vulnerabilities by the number of

Apache installations in terms of million system-months and

the fitted effort-based model. This effort-based model also

shows that Apache is approaching the saturation phase since

any vulnerability has not been found after 4000 million

system-months as the number of Apache severs increases.

IIS, released in 1995, is the only major proprietary Web

server with over 60 million installations during January 2009.

The vulnerability dataset from January 1996 to December 2008

is used in this analysis.

Fig. 6(a) shows the cumulative number of vulnerabilities

by month and the fitted time-based model for the IIS Web

server. The time-based and effort-based models fit the data

for IIS very well. The IIS Web server appears to have reached

the saturation phase, since 2004 the vulnerability finding rate

has been low. There was a recent increase because of the six

vulnerabilities found during 2008. A possible explanation for

this could be that the number of IIS Web servers installed has

increased since 2006 and a new version of IIS was released in

February 2008.

Fig. 6(b) shows the cumulative number of vulnerabilities for

the IIS server and the effort-based model by million system-

months. The figure shows a significant degree of saturation.
The fit of the models to the data as shown in Figs. 5 and 6

have been examined. Table 3 gives the c2 (chi-square) values

and parameter values for both the time-based and effort-

based models. For c2 goodness of fit test, the alpha level is 5%.

For comparison, the corresponding parameter values are also

provided for the Windows 98 and NT operating systems, as

well as the chi-square values.

Table 3 shows that the chi-square values are less than the

critical values. This demonstrates that the fit for Apache, IIS,

Windows 98 and NT is significant for the both models with P-

values ranging from 0.64535 to 1, indicating that the fit is

statistically significant. It is observed that parameter A is

always less than 0.005 and parameter C is also less than 0.71,

while parameter B corresponds approximately to the number

of vulnerabilities.
4. Vulnerability categories

In the previous section, the application of the two models for

the total number of vulnerabilities of Apache and IIS has been

examined. Here, the models applied to portioned data using

a classification scheme for server vulnerabilities.

Distinction among vulnerabilities is useful when devel-

opers want to examine the nature and extent of the problem.

It can help determine what kinds of protective actions would

be most effective. Vulnerability taxonomy is still an evolving

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

Table 3 e Chi-square goodness of fit test results for total vulnerabilities.

Time-based model Effort-based model

A B C c2 ccritical
2 P-value B lvu c2 ccritical

2 P-value

Apache 0.0003 135.57 0.5745 24.69 186.1458 1 136.50 0.0007 16.224 61.65623 0.99996

IIS 0.0005 129.74 0.7034 79.82 186.1458 1 130.13 0.0064 14.688 55.75848 0.99961

Windows NT 0.00018 253.3 0.1293 136.14 173.0041 0.64535 N/A N/A N/A N/A N/A

Windows 98 0.0004 100.94 0.1002 81.11 114.2679 0.99688 N/A N/A N/A N/A N/A

Fig. 7 e Vulnerabilities by type.

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 256
area of research. Several taxonomies have been proposed

(Aslam and Spafford, 1996; Bishop, 1999; Landwehr et al., 1994;

Seacord and Householder, 2005; Gopalakrishna et al., 2005;

Venter et al., 2008). An ideal taxonomy should have such

desirable properties as mutual exclusiveness, clear and

unique definition, and coverage of all software vulnerabilities.

Vulnerabilities can be classified using schemes based on

cause, severity, impact and source, etc. In this analysis, the

classification scheme is used employed by the NVD of the

National Institute of Standards and Technology. This classi-

fication is based on the causes of vulnerabilities. The eight

classes are as follows (NVD, 2010; OSVDB, 2010):

1. Input Validation Error (Boundary condition error, Buffer over-

flow): Such types of vulnerabilities include failure to verify

the incorrect input and read/write involving an invalid

memory address.

2. Access Validation Error: These vulnerabilities cause failure in

enforcing the correct privilege for a user.

3. Exceptional Condition Error: These arise due to failures in

responding to unexpected data or conditions.

4. Environmental Error: These are triggered by specific condi-

tions of the computational environment.

5. Configuration Error: These vulnerabilities result from

improper system settings.

6. Race Condition Error: These are caused by the improper

serialization of the sequences of processes.

7. Design Error: These are caused by improper design of the

software structure.

8. Others: Includes vulnerabilities that do not belong to the

types listed above, sometimes referred to as nonstandard.

Unfortunately, the eight classes are not completely mutu-

ally exclusive. Because a vulnerability can belong tomore than

one category, the summation of all categories for a single

software systemmay add up tomore than the total number of

vulnerabilities (also the percentages may exceed 100)

(Gopalakrishna and Spafford, 2005).

Fig. 7 compares vulnerability distributions in Apache and

IIS. The categories with the highest numbers are input vali-

dation errors, followed by design errors. There is a slight

difference in category ordering between Apache and IIS, with

Apache having more configuration errors than access valida-

tion errors; however, IIS has more access validation errors.

While IIS has been more vulnerable to access validation

errors, the fact that Apache has been more vulnerable to

configuration errors may be due to Apache’s more complex

installation requirements.

To determinewhether there is an observable pattern at the

level of individual classes, the vulnerabilities are plotted for
the major categories. Since a similar pattern for the uncate-

gorized vulnerabilities is noted, a possible fit was examined.

Figs. 8 and 9 show the fit for the IIS and Apache respectively. It

may be noted that the number of input validation errors and

design errors are the most common category in Apache and

IIS. We chose to fit the categories which had enough data

points available for fitting. In the figures, these three major

categories are shown: input validation errors, design errors

and exceptional handling condition errors.

The categorized number of vulnerabilities shows the same

pattern as demonstrated by the total number of vulnerabil-

ities. Thus, each category shows a related pattern with regard

to the total number of vulnerabilities. Time-based and effort-

based models are fitted for each category. Table 4 shows the

chi-square goodness of fit tests for the Apache and IIS models

by category. The table demonstrates that the chi-square

values for each category are less than the corresponding chi-

square critical values and the P-values are close to 1. The fits

for input validation, design and exceptional condition error

classes are significant for both models.
5. Vulnerability severity level

Severity is another way of classifying vulnerabilities. The

severity level of a vulnerability indicates how serious the

impact of an exploitation can be. Three severity levels are

often defined; high, medium and low. Some other organiza-

tions such as Secunia (2010) use three to five levels and use

their own definition for severity. The NVD of the National

Institute of Standards and Technology has used Common

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

Fig. 8 e Fitting IIS vulnerabilities by category. (a) Time-

based model; (b) Effort-based model.

Fig. 9 e Fitting Apache vulnerabilities by category. (a)

Time-based model; (b) Effort-based model.

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 2 57
Vulnerability Scoring System (CVSS) (First of Incident, 2010)

metric for vulnerability severity with ranges from 0.0 to 10.0;

CVSS uses many factors to determine the severity where the

range from 0.0 to 3.9 corresponds to low severity, 4.0 to 6.9 to

medium severity and 7.0 to 10.0 to high severity. The NVD

(2010) describes three severity levels as follows:

1. High Severity: vulnerabilities make it possible for a remote

attacker to violate the security protection, or permit a local

attack that gains complete control, or are otherwise

important enough to have an associated CERT/CC advisory

or US-CERT alert.

2. Medium Severity: vulnerabilities are those not meeting the

definition of either ‘high’ or ‘low’ severity.

3. Low Severity: vulnerabilities typically do not yield valuable

information or control over a system but may provide the

attacker with information that may help him find and

exploit other vulnerabilities or may be inconsequential for

most organizations.

The distributions of the severity levels of the Apache and

IIS vulnerabilities show similarity. About 60e70% of total

vulnerabilities are the medium severity, followed by about

30e40% with high severity, with low severities at about 4e6%.

The time-based and effort-basedmodels have been applied

to the three severity classes. In Figs. 10 and 11, the solid lines

indicate the fitted the time-based and effort-based models for

each severity level. The two figures show the result of fitting
the time-based and effort-based models to the three severity

classes. The plots suggest that especially for the medium

severity vulnerabilities, the IIS vulnerability data appears to be

in the saturation phase while the Apache vulnerabilities are

still being discovered.

Table 5 shows the chi-square goodness of fit tests and the

parameter values for Apache and IIS by severity level. The

parameter values are obtained from data corresponding to

Figs. 10 and 11 using regression analysis. As before, for chi-

square goodness of fit test, the test alpha level is 5%. This chi-

square test shows that the fits for the three severity categories

are significant, and the chi-square tests show that the

vulnerabilities classifiedby severitydatasetsfit themodelwell.

The fraction of high andmedium severity vulnerabilities is

substantial and presents a significant risk to the HTTP servers

potentially leading to problems such as unauthorized system

access, denial of service (DoS) attack, exposure of sensitive

information, etc. Fig. 12 plots the percentage of the cumulative

number of vulnerabilities for each severity class for each

month for Apache and IIS. Both Apache and IIS show a similar

pattern. Note that the first few points in the plots are not

significant, since they represent only a small number of

vulnerabilities. The plots suggest that a larger fraction of the

high severity vulnerabilities is found early, while the medium

severity vulnerabilities represent about 70% share after three

or four years. This data suggests that theremay be a deliberate

effort to focus on high severity vulnerabilities in early phase.

This is supported by the observations about the patching rate

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

Table 4 e Chi-square goodness of fit test results for vulnerabilities by category.

Time-based model Effort-based model

A B C c2 ccritical
2 P-value B lvu c2 ccritical

2 P-value

Apache Input validation 0.00036 52.75307 1.342086 19.87597 186.1458 1 51.2449 0.000958 0.006129 61.65623 0.99998

Design error 0.00064 27.99523 67.37607 27.92677 186.1458 1 31.1015 0.000817 0.003253 61.65623 0.99999

Access validation 0.001474 8.554207 22060622 120.5440 186.1458 1 10.4792 0.0006 0.06152 61.65623 1

IIS Input validation 0.000559 64.79746 1.964722 24.007 186.1458 1 65.20718 0.005732 3.242342 55.75848 1

Design error 0.000887 18.89434 15.97189 81.139 186.1458 1 19.24239 0.022189 2.060538 55.75848 1

Access validation 0.000574 28.06895 5.850765 31.74241 186.1458 1 27.79932 0.005897 3.050723 55.75848 1

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 258
of input validation errors which tend to have higher severity

levels. Di Penta et al. (2009) have empirically shown that buffer

overflows are patched significantly faster than other types of

vulnerabilities because they represent the kind to which the

developers tend to respond faster.
6. Predictive capability of models

Even when for a VDM shows the nice goodness of fit during

the period covered, it is possible that the model may not be

able to predict well in the future if the model does not antic-

ipate changes in the trend that is actually encountered. In the

software reliability engineering field, the predictive capability

for a number of reliability growth models has been investi-

gated in the past (Musa and Okumoto, 1984; Malaiya et al.,

1992). A VDM having a good predictive capability should be

able to estimate the future behavior, for example total number
Fig. 10 e Fitting Apache vulnerabilities by severity level. (a)

Time-based model; (b) Effort-based model.
of vulnerabilities using currently available datasets. It can be

used to estimate the resources needed for maintenance and

the risk estimation.

Here, the starting point for comparing the two models is

chosen to be when cumulative installations exceed 100

million and 50 million for Apache and IIS Web servers

respectively, since only after some significant past data, the

effort-based model can project the future trend. The predic-

tive capabilities for the two models can be comparable only

when the two models have data points for the same specific

time points. Since the time-based model has many more data

points compared with the effort-based model, the models are

applied for the calendar timewith somewhat unequal interval

of months during the estimations. For each time point, the

available partial data at the point are fitted to themodels using

regression analysis to estimate model parameters. Then the
Fig. 11 e Fitting IIS vulnerabilities by severity level. (a)

Time-based model; (b) Effort-based model.

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

Table 5 e Chi-square goodness of fit test results for vulnerabilities by severity level.

Time-based model Effort-based model

A B C c2 ccritical
2 P-value B lvu c2 ccritical

2 P-value

Apache High 0.000337 135.575 0.574563 28.85319 186.1458 1 37.32424 0.001061 12.88105 61.65623 0.9999

Medium 0.000298 40.56143 0.805567 55.79249 186.1458 1 93.90457 0.000541 9.335251 61.65623 1

Low 0.000339 88.93068 1.092679 24.48047 186.1458 1 9.835684 0.0004 2.359279 61.65623 0.9999

IIS High 0.000542 129.7421 0.703459 32.68021 186.1458 1 43.83469 0.005239 6.066258 55.75848 0.9996

Medium 0.000487 43.63152 1.577562 72.58211 186.1458 1 80.51197 0.006809 9.343797 55.75848 1

Low 0.000562 80.2965 1.271963 10.52017 186.1458 1 5.987127 0.014206 0.460018 55.75848 0.9999

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 2 59
models with the estimated parameters for each time point are

used to predict the final number of vulnerabilities at the end of

the time period. The estimated final values for each time point

are compared with the actual numbers of vulnerabilities to

calculate normalized estimation error rate.

We use prediction error (PE) as a metric for comparison

(Malaiya et al., 1992). PE is a measure of how well a model

predicts throughout the test phase, and indicates the general

bias of themodel, whether themodel tends to overestimate or

underestimate relative to the reality. Prediction error PE is

given by

PE ¼ 1
n

Xn

t¼1

Ut � U

U
(5)

where n is total number of data points during the prediction

period, and U is the actual number of vulnerabilities whereas

Ut is the estimated final number of vulnerabilities at time t.
Fig. 12 e Severity of vulnerabilities detected. (a) Apache;

(b) IIS.
The normalized errors ((Ut � U)/U) of the estimated values for

the two Web servers are shown in Fig. 13(a) and (b). The PE

values are given in Table 6, which suggests that the VDMs tend

to underestimate U.

In all cases, the prediction error approaches zero as more

and more of the data becomes available. For the Apache Web

server, in Fig. 13(a), the effort-based model yields a lower

prediction error than the time-based model. Also the effort-

based model stabilizes to the 0% error value line faster. The

time-basedmodel shows a somewhat similar patternwith the

effort-based model but a bit less stable. For the IIS, the effort-

based model and the time-based model both yield generally

similar prediction patterns each other in Fig. 13(b). However it

needs to be kept in mind that the effort-based model requires

the use of market share data which may not always be readily

available. In some cases, the effort variation assumed by the

AML model is consistent with real data usage. However, in

other cases, it is possible that usage may vary in a different
Fig. 13 e Prediction error. (a) Apache; (b) IIS.

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

Table 6 e Prediction error.

Effort-based model Time-based model

Apache �0.0749 �0.1665

IIS �0.1177 �0.1153

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 260
manner or unpredictably. In such situations, explicitly use of

the effort variation, as measured by the installed base, may

provide more accurate predictions.

Since the models generally tend to underestimate, it is

likely that a recalibration (Brocklehurst et al., 1990) can further

improve the predictive capability.
7. Discussion

When the total number of vulnerabilities is examined, both

the time-based and effort-based models fit the datasets well,

even when the vulnerabilities are categorized by type. This

suggests that the models can be used to estimate the number

of vulnerabilities expected to be discovered in a given period,

and which types are likely to dominate.

The results of model fitting for the vulnerabilities classified

by type are shown in Table 4. The fittingwas done for themost

common types of vulnerabilities for which the available data

points are enough to be statistically significant.

The effort-based model requires the number of users for

target products in market share, which may be difficult to

obtain. The time-based model does not require this data; it

can therefore be a feasible alternativewhenmarket share data

is unavailable.

Static analysis has been used in software reliability engi-

neering, where some of the systems’ attributes are estimated

empirically even before testing begins. Similar static analysis

can be carried out by utilizing metrics such as software size

and estimated number of total defects. These methods can

potentially be used to estimate Defect density (DKD) and

Vulnerability density (VKD) as follows:

DKD ¼ Known Defects
Ksloc

(6)

VKD ¼ Known Vulnerabilities
Ksloc

(7)

DKD, defects per thousand lines of code, and VKD, vulnerabil-

ities per thousand lines of code, can then be used to estimate

the total number of vulnerabilities of a comparable system.
Table 7 e Known DKD vs. known VKD.

Application Ksloc Known
defects

DK

VKD/DKD

Apache 373 (Unix) 1380 3.69

IIS N/A N/A N/A

Win 98 16,000 10,000 0.62

WinNT 4.0 18,000 10,000 0.55
Table 7 shows the major attributes of the Apache server and

two other major operating systems for comparison. Unfortu-

nately, some of the important metrics for the Microsoft IIS

server are not available. For proprietary systems, such data

can be hard to obtain outside of the developing organization.

The sizes of IIS and Apache may be comparable in terms of

SourceLinesOfCode (SLOC)numbers sincebothoffer the same

features. The code size for Apache was determined using the

SLOCCount (2010) tool. Source code size ofWindows 98 andNT

4.0 is given by McGraw (2003). The Apache 2.2.11 source code

size forWindows is 240 Ksloc, smaller than for Unix version of

Apache 2.2.11 of 373 Ksloc. A few of the Apache vulnerabilities

may be applicable to only a specific platform. In Table 7,

vulnerability density values for the Windows operating

systemsare significantly less than forApache. Thismaybedue

to the fact that Windows operating systems have large

segments that do not play a role in accessibility, while servers

are smaller and therefore vulnerabilities are more concen-

trated in the code. This assumption is supported by the fact

that the defect density to the vulnerability density ratio is

higher in Windows NT 4.0, a server operating system, than in

Windows 98, a client operating system. Note that VKD/DKD

ratios are within a narrow range.

The data for IIS suggests that the vulnerability discovery

rate has slowed down significantly since 2004. However,

several vulnerabilities were found in IIS in 2008. This may be

caused by a new version of IIS being released and the expan-

sion of IIS market share. Factors such as patch releases,

number of remaining vulnerabilities, economic aspects etc.,

also need to be considered when evaluating Web servers.

One interesting fact is that Apache, IIS and SUN Web

servers share one common vulnerability (CVE-2008-2579),

even though the three software systems do not share any

source code. The vulnerability is unspecified in the Oracle

WebLogic Server (2010) Plug-in for the Web servers’ compo-

nent in some Oracle BEA Systems (2010) product suite. The

vulnerability allows unauthorized disclosure of information,

modification, and disruption of service.

The results show that the two models are found to be

applicable even though the two software systems have gone

through a number of successive versions. Kim et al. (2007)

have examined the sharing of the code among successive

versions for some software systems and have suggested that

for evolving software the overall affect may be explained by

a superposition of the trends for vulnerabilities for each

individual version.

It should also be noted that the number of vulnerabilities,

either found or estimated as remaining, should not be the only
D Known
vulnerabilities

VKD Ratio

9 132 0.353 0.0954

137 N/A N/A

5 91 0.0057 0.0091

6 197 0.0109 0.0197

http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 2 61
measurement of a security threat. Factors such as patch

development and application delays and vulnerabilities’

exploitation rates also need to be considered.
8. Conclusions and future work

Here, the applicability of quantitative models for the number

of vulnerabilities and vulnerability discovery rates for the two

most popular HTTP servers are explored. Results demonstrate

that the vulnerability discovery in the Web servers follows

certain patterns, which can bemodeled. The results show that

when all the vulnerabilities are examined, both models fit the

datasets well. Themodels were found to provide significant fit

even when vulnerabilities are categorized by cause or severity

levels. This suggests that the models can be used to estimate

not only the number of vulnerabilities expected to be discov-

ered but also the likely distribution in terms of categories by

origin and severity levels.

It was observed that a number of input validation error

vulnerabilities can be large which would constitute a signifi-

cant risk. The results can be used to optimize the distribution

of testing and patch development effort by allocating more

effort to vulnerabilities from classes that represent a higher

risk, thereby reducing the overall risk due to vulnerabilities.

The results indicate that themodels originally proposed for

operating systems are also applicable to HTTP servers. These

models can be used to estimate vulnerability discovery rates,

which can be integrated with risk assessment models in the

future (Sahinoglu, 2006). Furthermore, these models can be

used to optimize the development and maintenance process

to achievemore secure software systems (Seacord, 2005). Also

thesemodels for vulnerability discovery are also applicable for

when applied to a subset of vulnerabilities of the same

severity attribute or belonging to the same category. This can

used to decide how and where effort should be allocated to

develop patches quickly as the vulnerabilities are discovered.

Also developers can specifically focus on types of vulnerabil-

ities that are most likely or significant to reduce the proba-

bility of generating them. The methods can also be used to

optimally test the patches or additional code. For instance,

currently the web servers have more input validation error

vulnerabilities. Developers then can choose to allocate more

effort on reducing the input validation error vulnerabilities.

The users of the software systems can use these models to

evaluate their risk and to come up with optimal patch appli-

cation strategies.

The results demonstrate the applicability of the two

models for software products that have undergone evolution.

However, the methods in this study do not make use of

detailed information on evolution that may be available.

Further research is needed to evaluate the impact of evolution

of software products that go through many versions by

explicitly or implicitly considering the shared code, vulnera-

bilities inserted and removed in the process and the impact on

resource allocation for testing and patch development. Use of

a recalibration may further improve the predictive capabil-

ities. Since the web-related software systems are not likely to

stop evolving soon, their security attributes will need to be

reassessed time to time.
r e f e r e n c e s

Alhazmi OH, Malaiya YK. Quantitative vulnerability assessment
of system software. In: Proc. annual reliability and
maintainability symposium; Jan. 2005a. p. 615e20.

Alhazmi OH, Malaiya YK, Ray I. Security vulnerabilities in
software systems: a quantitative perspective. In: Proc. Ann.
IFIP WG11.3 working conference on data and information
security; Aug. 2005b. p. 281e94.

Alhazmi OH, Malaiya YK. Prediction capability of vulnerability
discovery process. In: Proc. reliability and maintainability
symposium; Jan. 2006. p. 86e91.

Alhazmi OH, Malaiya YK. Application of vulnerability discovery
models to major operating systems. IEEE Transactions on
Reliability; March 2008:14e22.

Alhazmi OH, Malaiya YK, Ray I. Measuring, analyzing and
predicting security vulnerabilities in software systems.
Computers & Security May 2007;26(3):219e28.

Alvarez G, Petrovic Slobodan. A new taxonomy of web attacks
suitable for efficient encoding. Computers & Security July
2003;22(5):435e49. doi:10.1016/S0167-4048(03)00512-1. ISSN:
0167-4048.

Anderson R. Security in open versus closed systemsdthe dance
of Boltzmann, Coase and Moore. In: Conf. on open source
software: economics, law and policy; 2002. p. 1e15.

Aslam T, Spafford EH. A taxonomy of security faults. Technical
report. Carnegie Mellon; 1996.

Aura T, Bishop M, Sniegowski D. Analyzing single-server network
inhibition. In: Proceedings of the 13th IEEE computer security
foundations workshop; Jul. 2000. p. 108e17.

BEA Systems, http://www.bea.com; April 2010.
Bishop M. Vulnerability analysis: an extended abstract. In: Proc.

second international symposium on recent advances in
intrusion detection; Sep. 1999. p. 125e36.

Brocklehurst S, Chan PY, Littewood B, Snell J. Recalibrating
software reliability models. IEEE Transactions on Software
Engineering 1990;16(4):456e70.

Browne HK, Arbaugh WA, McHugh J, Fithen WL. A trend analysis
of exploitations. In IEEE symposium on security and privacy;
2001. p. 214e29.

Conseil Européen pour la Recherche Nucléaire (CERN), http://info.
cern.ch/; April 2010.

Di Penta M, Cerulo L, Aversano L. The life and death of statically
detected vulnerabilities: an empirical study. Information and
Software Technology October 2009;51(10):1469e84.

Fenton NE, Rafail J. Prediction and control of ADA software
defects. Journal of Systems and Software; July 1990:199e207.

First of incident response and security teams (FIRST.org, Inc.),
Common vulnerability scoring system (CVSS), http://www.
first.org/cvss/; April 2010.

Ford R, Thompson H, Casteran F. Role comparison reportdweb
server role. Technical Report. Security Innovation; 2005.

Gopalakrishna R, Spafford EH. A trend analysis of vulnerabilities.
CERIAS, Purdue University; May 2005. CERIAS TR 2005-05.

Gopalakrishna R, Spafford EH, Vitek J. Vulnerability likelihood:
a probabilistic approach to software assurance. Technical
Report. CERIAS; 2005.

Hallberg J, Hanstad A, Peterson M. A framework for system
security assessment. In: Proc. 2001 IEEE symposium on
security and privacy; May 2001. p. 214e29.

Hatton L. Reexamining the fault density-component size
connection. IEEE Software; March 1997:89e97.

IIS vs. Apache, Looking Beyond the Rhetoric, http://www.
serverwatch.com/tutorials/article.php/3074841; April 2010.

Joh H, Kim J, Malaiya YK. Vulnerability discovery modeling using
Weibull distribution. In: 19th international symposium on
software reliability engineering; 2008. p. 299e300.

http://www.bea.com
http://info.cern.ch/
http://info.cern.ch/
http://www.first.org/cvss/
http://www.first.org/cvss/
http://www.serverwatch.com/tutorials/article.php/3074841
http://www.serverwatch.com/tutorials/article.php/3074841
http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

c om p u t e r s & s e c u r i t y 3 0 (2 0 1 1) 5 0e6 262
Kargl F, Maier J, Weber M. Protecting web servers from distributed
denial of service attacks. In: Proc. 10th international WWW
conference; 2001. p. 514e24.

Kim J, Malaiya YK, Ray I. Vulnerability discovery in multi-
version software systems. In: Proc. 10th IEEE Int. symp. on
high assurance system engineering (HASE), Dallas; Nov. 2007.
p. 141e8.

Landwehr CE, Bull AR, McDermott JP, Choi WS. A taxonomy of
computer program security flaws. ACM Computing Surveys;
1994:211e54.

Lyu MR. Handbook of software reliability. McGraw-Hill; 1995.
Machie A, Roculan J, Russell R, Velzen MV. Nimda worm analysis.

Tech. Rep.. In: Incident analysis. SecurityFocus; September
2001

Madan BB, Goseva-Popstojanova K, Vaidyanathan K, Trivedi KS.
A method for modeling and quantifying the security attributes
of intrusion tolerant systems. Performance Evaluation; 2004:
167e86.

Malaiya YK, Karunanithi N, Verma P. Predictability of software
reliability models. IEEE Transactions on Reliability December
1992;41(4):539e46.

McGraw G. From the ground up: the DIMACS software security
workshop. IEEE Security and Privacy March/April 2003;1(2):
59e66.

Moore D, Shannon C, Claffy KC. Code-red: a case study on the
spread and victims of an internet worm. In: Internet
measurement workshop; 2002. p. 273e84.

Musa JD, Okumoto K. A logarithmic Poisson execution timemodel
for software reliability measurements. In: Proceedings of 7th
international conference on software engineering, Silver
Spring, MD; March 1984. p. 230e38.

Musa J. Software reliability engineering. McGraw-Hill; 1999.
Netcraft, http://news.netcraft.com/; April 2010.
National Vulnerability Database (NVD), http://nvd.nist.gov/; April

2010.
Oracle WebLogic Server, http://www.oracle.com/technology/

products/Weblogic/index.html; April 2010.
Open Source Vulnerability Database (OSVDB), http://osvdb.org;

April 2010.
Pfleeger CP, Pfleeger SL. Security in computing. 3rd ed. Prentice

Hall PTR; 2003.
Rescorla E. Security holes. Who cares?. In: Proc. 12th USENIX

security symposium; 2003. p. 75e90.
Rescorla E. Is finding security holes a good idea? IEEE Security and

Privacy; 2005:14e9.
Sahinoglu M. Quantitative risk assessment for dependent

vulnerabilities. In: Proc. reliability and maintainability
symposium; Jan. 2006. p. 82e85.

Seacord CR, Householder AD. A structured approach to
classifying vulnerabilities. Technical Report CMU/SEI-2005-
TN-003. Carnegie Mellon; 2005.

Seacord R. Secure coding in C and Cþþ. Addison Wisely; 2005.
Secunia, http://secunia.com/; April 2010.
Securityfocus, http://www.securityfocus.com/; April 2010.
SLOCCount, http://dwheeler.com/sloccount; April 2010.
Venter HS, Eloff JHP, Li YL. Standardizing vulnerability categories.

Computers & Security MayeJune 2008;27(3e4):71e83. doi:10.
1016/j.cose.2008.04.002. ISSN: 0167-4048.

Woo S-W, Alhazmi OH, Malaiya YK. Assessing vulnerabilities in
Apache and IIS HTTP servers. In: Proc. IEEE Int. symp. on
dependable, autonomic and secure computing (DASC’06);
Sept.eOct. 2006. p. 103e10.
Sung-Whan Woo is a PhD candidate in the
Computer Science Department at Colorado
State University. He received an M.S. in the
Computer Science from Colorado State
University in 2006. His primary research
interests are in string searching problems,
graph theory (Interval graph) and software
vulnerability (web server and web browser
vulnerabilities).

HyunChul Joh is a Ph.D. student in
computer science department at Colorado
State University. His research focuses on
modeling the discovery process for security
vulnerabilities and risk metrics. He received
an M.S. in computer science from Colorado
State University in 2007 and a B.E. in Infor-
mation and Communications Engineering
from Hankuk University of Foreign Studies
in Korea in 2005.

Omar H. Alhazmi received the Ph.D. in
Computer Science from Colorado State
University in 2006, and his Master’s degree
from Villanova University in 2001. His work
has involved collection and analysis of
vulnerability data for several major appli-
cations and developing analytical models.
He has published eleven papers on quanti-
tative vulnerability discovery modeling. He
has been working at the National Informa-
tion Center’s Research Center in Riyadh
since 2007.

Yashwant K. Malaiya is a Professor in the
Computer Science Department at Colorado
State University. He receivedM.S. in Physics
from Sagar University, MScTech in Elec-
tronics from BITS Pilani, and PhD in Elec-
trical Engineering from Utah State
University. He has published more than 160
papers in the areas of fault modeling, soft-
ware and hardware reliability, testing and
testable design, and quantitative security
risk evaluation. He served as the General
Chair of 1993 and 2003 IEEE International
Symposium on Software Reliability Engi-
neering (ISSRE). He co-edited the IEEECS Technology Series book
Software Reliability Models, Theoretical Developments, Evaluation and
Applications. He is a recipient of the IEEE Third Millennium Medal,
and the IEEE Computer Society Golden Core award.

http://news.netcraft.com/
http://nvd.nist.gov/
http://www.oracle.com/technology/products/Weblogic/index.html
http://www.oracle.com/technology/products/Weblogic/index.html
http://osvdb.org
http://secunia.com/
http://www.securityfocus.com/
http://dwheeler.com/sloccount
http://dx.doi.org/10.1016/j.cose.2010.10.007
http://dx.doi.org/10.1016/j.cose.2010.10.007

	Modeling vulnerability discovery process in Apache and IIS HTTP servers
	Introduction
	Vulnerability discovery models
	Aggregate vulnerabilities in HTTP server
	Vulnerability categories
	Vulnerability severity level
	Predictive capability of models
	Discussion
	Conclusions and future work
	References

