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Abstract

In the early phase of testing, the defect detection rate
often shows an erratic behavior. The delayed S-shaped
model is robust in this situation and is now widely
used by the Japanese. Recent investigations suggests
that the logarithmic model has much better overall pre-
dictive capability; however, it is often unstable at the
beginning. Here a technique is presented that makes
the logarithmic model much more robust in the early
phases.

1 INTRODUCTION

Managing the reliability of software is always a critical
part of software development. Using a reliability model
a manager can project the number of bugs that need
to removed and the resources (time and personnel) that
are needed to obtain the target reliability level. The ca-
pability to make good projections sufficiently early can
allow a manager to allocate the resources efficiently in
order to meet the release date. Unlike many other sta-
tistical applications, the test data recorded contains a
large amount of noise. This often means that the fit of a
model, as measured by traditional statistical measures
(like R?) [Camp8T]is less perfect than desired. The ap-
plication of a Software Reliability Model (SRM) is spe-
cially problematic in the early phases of testing. Not
only is there considerable noise, often the software does
not show clear signs of a reliability growth for a while.
The reliability growth, as reflected by a declining fault
detection rate (or failure intensity A), often is not ap-
parent until the software is relatively stable and defect
clusters have been removed. Most SRMs like the expo-
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nential and the logarithmic models assume a reliability
growth [Musa87], [MS90]. They tend to break down
during the early phases, yielding negative values for
parameters which are expected to be positive. If used
for making projections, they will generate values which
are clearly impossible. The delayed S-shaped model,
proposed by Yamada et al. [YOS85], assumes that the
curve for )\ against time (Figure 1) initially rises and
then passes through a slope of 0 at the peak. After that
A declines indicating reliability growth. It thus fits bet-
ter in situations where there is no reliability growth in
the beginning. It exhibits a stable behavior at the be-
ginning, thus making it suitable for early planning. It
has become specially popular in Japan.
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Figure 1: The failure intensity for the two models

We have recently evaluated predictability of some of
the popular SRMs using data sets from several differ-
ent sources, including Japan. Using a predictability
measure, termed Average Error (AE), we found that
the logarithmic models work best in a majority of cases
[MKV91]. In other cases also it performs satisfacto-
rily. The delayed S-shaped model performed poorly for



most data sets. Other researchers appear to have ob-
tained similar results. This is in spite of the fact that
the delayed S-shaped model often provides a better fit.
These results suggest that the logarithmic model gener-
ally describes the overall defect detection process more
accurately. As discussed in the next section, the loga-
rithmic model assumes a decline in fault detection rate
A. When the reliability growth is not occurring, the ap-
plication of the logarithmic model often yields negative
value for one of the parameters. Thus no projections
can be made until X starts declining. Here an approach
is presented which will handle these “bad” data points.

2 The Major Models: Formula-
tion

Table 1 below summarizes the basic features of the
three major two-parameter models. They are fre-
quently stated in terms of two parameters, 39 and 31, as
shown. For all of them (1 is the time scale-factor. The
maximum value of A, denoted below by A, is Gof1,
for all models. For the exponential and the delayed S-
shaped models, 3y is the total number of faults that will
be eventually detected. Since the logarithmic model is
an infinite-faults model, By has no such significance and
simply serves as a fault-count scale-factor.

One good way to visually view data is to look at m-
plots (Figure 2). A plot of 1/\ (i.e. MTTF) against
time will be linear if the behavior is logarithmic as
shown in the last column. The exponential and the de-
layed S-shaped models will have an exponential trend,
the latter has a minimum at t=1/0;.

In some situations, it is useful to use A, (Bof1) as a
parameter instead of 3y. Our analysis with actual data
from many projects shows that A, is somewhat more
robust compared with By. Table 2 illustrates this for the
parameters of the logarithmic model.. In addition A, is
meaningful for all the three models, whereas Gy lacks a
physical meaning for the logarithmic model. Recasting
the models in terms of parameters A, and (1, we have
these expressions for A(¢):

Exponential : \(t) = Ape Pt (1)

Am
Logarithmic : A(t) = T+ bt (2)
Delayed S — Shaped : \(t) = Apfite ™™t (3)

| Model || A(t) | Maximum A | 1/X Trend |
Expo. BoPreP1t A(0) = BoB Exponen.
Log. BoBi/(1 + Pat) A(0) = Bofu Linear
S-sh. BoBite Pt A(1/B1) = BoP1 | Exponen.

Table 1: Major 2-parameter models

| Time| Bo| B[ ]
571 || -12.63 | -3.48 | 43.94
968 | 50.50 | 1.29 | 65.09
1986 8.68 | 25.11 | 217.95
3098 || 12.50 | 7.74 | 96.68
5049 | 11.61 | 9.65 | 112.09
5324 || 36.87 | 1.03 | 37.80
6380 || 43.38 | 0.83 | 35.88
7644 || 44.73 | 0.79 | 35.48
10089 || 29.11 | 1.61 | 46.93
10982 || 46.76 | 0.71 | 33.21
12559 || 50.89 | 0.63 | 31.81
13486 || 72.12 | 0.38 | 27.49
15806 || 57.62 | 0.53 | 30.32
17458 || 64.28 | 0.44 | 28.59
19556 || 63.81 | 0.45 | 28.70
24127 || 42.00 | 1.03 | 43.33
24493 | 67.82 | 0.39 | 26.71
36799 | 23.98 | -3.13 | -75.05
40580 || 31.58 | 3.73 | 117.76
42296 || 44.91 | 0.75 | 33.46
49171 || 41.33 | 0.96 | 39.79
52875 || 49.16 | 0.57 | 28.14
56463 | 57.26 | 0.40 | 22.83
62651 || 56.64 | 0.41 | 23.14
71043 | 52.25 | 0.50 | 26.28
82702 || 4543 | 0.82 | 37.35
Median | 45.43 | 0.75 | 35.48
Table 2: Estimated parameters for data set P1
[MKV91]
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Figure 2: The m-plots for different models



3 Problems in Parameter Esti-
mation

The three expressions above can be used directly to es-
timate parameters using non-linear regression. Fortu-
nately, in all three cases it is possible to linearize the ex-
pression using suitable coordinate transformation. This
allows use of linear regression which is computationally
much more efficient. The equation (2) may be restated
as:

1
1A,

1/A =
/A A Am

(4)

Since by definition, both 8; and A, are required to be
positive, both the slope and intercept in an m-plot are
expected to be positive. As discussed above, the fault
detection rate often tends to be erratic at the beginning
of testing. If only a few initial data points are available,
the best least square fit using equation (4) may yield a
line with a negative slope. This can render application
of the logarithmic model invalid for some of the initial
data points. For example if one uses the first four points
in Figure 3, the slope of the trend would be negative.
One possible approach can be to look for a least square
fit with the constraint that the slope must be positive.
This can, however, be computationally complex. In
addition, this slope can vary widely because only a few
points may be available for fitting.

10
9 — —
8 — —
7 - |
6 — —
1/A 5 -
4 |
3 ®\® i
2 — —
1 — —
0 | | | | |
0 200 400 600 800 1000 1200
Time

Figure 3: Points on the m-plot for data set 3.2 [MKV91]

Here, a new approach is suggested to handle the prob-
lem in parameter estimation. It is based on the view
that for a small period in the early part of testing, the
reliability growth is small and the variations in 1/X are
merely noise superimposed on the constant 1/A,. A
possible approach is to assume that g; is equal to some
previously assumed low value. Thus, the parameter es-
timation should use these rules:

1. If the use of equation (4) results in negative slope,
the following correction should be made:

(a) The constant (intercept) is replaced by the
average value.

(b) A predetermined value By, is used for §;. It
must be a low estimate so that it is not opti-
mistic in the long term. Such a correction
generally would be needed only during the
early phases of testing.

2. No correction is needed if the parameter values are
positive.

The value of 81 does not have to be estimated ac-
curately because it can be shown that for low values of
t the behavior is relatively insensitive with respect to
B1. Consider the expression for A and p,

Am
A= 14 Bt )
)\m(l + ﬂ1t)_1 (6)
= An(1=0it+...) for it <1 (7
Am for fit << 1 (8)
po= min(+ o) 9)
B
2,42
= A—m(ﬁlt—ﬁl—t—}—...) for pit <1 (10)
B 2
~ Apt for it << 1 (11)

One can estimate (3i; a-priori using the approach
below. When a satisfactory value of 8; is found using
test data, the a-priori value is disregarded.

Table 3 illustrates the use of the above rules. The
value for (11 was arbitrarily chosen to be equal to
4.1075,

Data Set Additional Faults

Time Faults Actual Log Expo D S-sh Log adj

0 0
58.8 15
117.6 44
164.6 66
188.2 103
410.4 146
491.3 175
560.4
629.5
661.1
729.4
926.6
1143.6

328
313
284
262
225
182
153
122
105

73

1792515
13382
835816
226

170

182

118

183

166
102
1969
48
53
70
54
94

313
325
383
140
155
178
120
142

Failure
Failure
Failure
140
155
178
120
154
276 52 122 136 76 122
304 24 47 55 33 47
328 0 0 0 0 0

206
223
255

Table 3: Comparisons with corrected logarithmic
model for data set 3.2 [MKV91]
4 Estimation of i,

While at this time accurate estimation of £; is not
possible, an approximate (3, for corrective use can be



found. For the exponential model, the parameters can
be empirically estimated using [MSKS90]:

By = D-§
B = K

S-Q

where S is the number of source instructions, r is
the object-instruction execution rate (for the computer
being used) and Q is average number of object instruc-
tions per source instruction (often in the vicinity of 4).
D is the defect density, which varies between 20 to 3
per KLOC at the beginning of the system test phase.
The fault exposure ratio K has been found to vary from
1.4x10-7 to 10.6x10-7. It has been suggested [MSKS90]
that the logarithmic model parameters §y, f1 may be
related with the exponential model parameters 8%, 3F
in the following way.

1
fo = 68 (14

B = aﬂlE

where a is in the vicinity of 5.

Here our objective is to estimate A, and S;. In the
beginning of testing, A,, is estimated simply by tak-
ing the average of the values. The value of 3, is then
estimated by using:

(15)

3 _Aﬂ_a)\m_a)\m
""" 6~ BF DS

The size S of the code is known. The initial defect
density D may be estimated using past experience for
the same design team. For example, if we assume that
the initial defect density is less than 20/KLOC, and if
we take a=>5, a low estimate for 3; would be:

Am
BiL = 0.25?

An estimate of 31 using equation (18) uses both static
and dynamic data. It can also be estimated using only
static information using equations (15) and (16). The
choice may depend on whether D or K can be estimated
more accurately. Satisfactory methods for empirically
estimating D have been proposed [TK85] whereas no
methods for estimating K exist at this time.

(16)

(17)

5 Concluding Remarks

In the beginning of testing, sometimes the failure in-
tensity varies erratically. In contrast with the delayed
S-shaped model, here the view taken is that the noise

essentially masks the trend in the beginning. Thus ini-
tially the dynamic data should not be used to evaluate
the trend. It is suggested that until a definite trend is
apparent, an a-priori value of 8; should be used.
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