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Abstract 
Instead of relying on setting an arbitrary threshold 
current value as in traditional IDDQ testing, clustering 
based test technique relies on the characteristics of an IC 
with respect to all the other ICs in a lot to make a test 
decision. An improvement in the cluster analysis 
technique for IDDQ testing is presented. Results of 
applying this technique to data collected on a high 
volume graphics chip are presented. The results are also 
compared against a newer more innovative form of IDDQ 
testing.  
 
1. Introduction 
 
Historically IDDQ testing has been used in addition to the 
functional tests to improve the quality of the device under 
test (DUT) [1, 2]. While IDDQ testing contributes 
significantly to the thoroughness of the test strategy, there 
has been reluctance on the part of IC foundries to adopt 
IDDQ testing as part of their overall test strategy for several 
reasons. Traditional IDDQ testing involves in setting an 
arbitrary threshold quiescent current and classifying ICs as 
good or bad (test decision) based on this threshold current 
value.  
 
While this approach seems intuitively sound, it suffers 
from three primary drawbacks; there is no commonly 
accepted procedure to set these threshold current values 
[3]. There is an underlying assumption that the quiescent 
current levels of a defective IC will be significantly higher 
than the quiescent current levels of a good IC and finally 
there is no procedure to distinguish between the elevated 
quiescent current levels caused by a defect and the 
elevated quiescent current levels that are an attribute of 
normal circuit operation. The assumption that there will be 
a significant difference in the good and defective quiescent 
current levels will no longer be valid in the future [4]. The 
die geometries have continued to shrink with advances in 
process technologies, leading to new design techniques 
like SOC (System On Chip). This increases the 
complexity and the amount of logic on an IC substantially, 
which in turn increases the quiescent current levels even 
on a good IC. Since an underlying principle of IDDQ testing 

is the ability to distinguish between the good and defective 
current levels and as the difference between good 
quiescent current levels and defective levels becomes 
progressively smaller leading to a difficulty in making a 
test decision, the notion that IDDQ testing is reaching its 
limits is of concern. 
 
This concern has led to newer and more innovative 
approaches to IDDQ testing. The two primary approaches 
are Current Signatures [5, 6] and ∆IDDQ Testing [7, 8]. In 
the production testing of both these approaches, instead of 
setting an arbitrary threshold for the quiescent currents, 
the quiescent currents are measured over a range of test 
vectors and the measured current values for each test 
vector are compared with the current values measured for 
the previous test vector. Any IC that displays a significant 
difference in the measured currents for any two 
successive test vectors is classified as defective. While 
both these approaches partly solve some of the issues 
involved with traditional IDDQ testing specifically the 
problems involved in setting an arbitrary threshold value 
for quiescent current levels, there are still some 
drawbacks. With the increased complexity of the ICs, 
among the test vectors applied there might be some test 
vectors that produce high quiescent currents even in good 
devices. Thus instead of being considered a design trait, a 
normal circuit operation that produces high quiescent 
current levels will be considered as a defect.  
 
In this paper, we further extend the approach proposed by 
S. Jandhyala, et all., [9-12]. The core of this approach lies 
in applying conventional cluster analysis techniques to 
IDDQ testing. Each IC is represented as a point in an N 
dimensional space where N is the number of test vectors 
applied. In any given lot of ICs, a large number of ICs are 
generally good and a smaller number tend to have defects 
of various types. Using this characteristic, at the end of 
the process all the ICs are grouped into a set number of 
groups that has been determined a priori. All the ICs in a 
group tend to display similar current distributions over a 
range of test vectors applied, i.e. they tend to display the 
same quiescent current levels when compared for each 
vector. This approach does not rely on a fixed threshold 
for the quiescent current values. It also takes into account 



the normal circuit operation states that display elevated 
quiescent current levels. In addition, this approach can 
provide a means of setting a threshold quiescent current 
level if so desired. In this paper we further extend this 
approach by making some recommendations on the 
number of clusters each lot ICs needs to be classified into, 
a mechanism to make a test decision on the ICs and 
approach to improve the quality of the test as per user 
requirements.  
 
This paper is organized as follows: Section 2 introduces 
cluster analysis techniques and their uses. Section 3 
provides an overview of the proposed approach and some 
background on the data used. Section 4 discusses the 
results obtained by implementing the suggested approach 
and their interpretation. Section 5 discusses the results of 
comparison between the proposed approach and the 
‘current signatures method’  and concludes the paper.  
 
2. Cluster Analysis 
 
Cluster analysis in its simplest form can be defined as 
finding ‘natural groups’  within a large data set. Clustering 
is the process by which a collection of n objects, each of 
which is described by a set of p characteristics or 
variables, is divided into k number of groups (k  <  n). All 
the objects in a particular group will then display the same 
characteristics over the entire range of individual p 
variables. In this approach, n is the number of ICs in a lot, 
p is the number of IDDQ test vectors applied and k is the 
number of groups or clusters formed at the end of the 
process. The purpose of clustering is to uncover any 
hidden structure or pattern that resides in the data and a 
further study is needed to achieve the end result, in this 
case a test decision. 
 
2.1 Clustering Algorithms 
 
The number of groups that are to be formed and the basis 
for this classification is a function of the specific 
clustering algorithm used and can be customized to fit a 
particular application.  Clustering involves a correlation 
or other such measure of association for forming groups 
of objects. There are several such measures, for example, 
‘Angular Separation’ , ‘City Block’ , ‘Euclidian Distance’ , 
the most common being the ‘Euclidian Distance’ .  The 
algorithm chosen for this application was the ‘K-Means’  
algorithm. The advantages associated with the ‘K-Means’  
algorithm are its robustness, the ability to specify the 
number of clusters, the algorithms treatment of the 
outliers, relative simplicity of the algorithm and its 
minimal use of the computing resources [11]  
 
2.1.1 K-Means Clustering Method 
 

In the K-Means method, individual data points are 
partitioned into clusters such that each data point belongs 
to the cluster whose center is closest in terms of 
‘Euclidian’  distance. The cluster centroid is calculated on 
the basis of the cluster’s current membership rather than 
it’s membership at the end of the last reallocation cycle. 
The algorithm initially forms a predetermined set of seed 
points. The final number of clusters specified determines 
this number of seed points. Each seed point is classified 
as a cluster. All the data points are then assigned to a 
cluster with the nearest centroid. The cluster centroid is 
then updated and the data points reallocated. This process 
repeats until there are no further changes in the cluster 
membership. 
 
2.2 Cluster Application 
 
The cluster analysis can be performed using several 
methods. There are several publications containing details 
on the algorithms, their applications and their 
characteristics. Using this information, writing ‘C’  code 
to implement the chosen algorithm is a fairly simple 
process. There are also several commercial off the shelf 
statistics software packages that have already 
implemented these algorithms. The two most common are 
‘SAS’ and ‘SPSS’. The software package used for cluster 
analysis in this paper was SPSS. 
 
3. IDDQ Testing and Cluster Analysis 
 
In the proposed approach, the IDDQ measurements 
collected after applying the test vectors are formatted to 
translate the data into a format acceptable by the 
statistical tool. This data is then subjected to cluster 
analysis. The results of the cluster analysis are then used 
to classify the devices as either good or defective. The 
results can also be further analyzed to make changes 
either in the design or to the manufacturing process thus 
improving yield. 
 
3.1 Background on the Data used  
 
The proposed approach was applied to IDDQ data collected 
on a high volume device manufactured in a deep sub 
micron process at Texas Instruments [9-12]. The device 
contains ≅650K gates and has extensive DFT features 
including full scan. All the vectors that were applied 
while obtaining the IDDQ measurements were generated 
using a commercially available ATPG tool. 
 
For the purpose of our work, 30 IDDQ measurements were 
taken on 4 lots containing 627, 716, 725 and 798 devices. 
A fault coverage of 95% (stuck-at fault model) was 
obtained using these 30 vectors. Also due to the 



constraints of space, the results obtained by applying the 
proposed approach on only one lot are provided. 
 
3.2 Number of Clusters 
 
The number of clusters the ICs to be divided into is 
specified at the start of the process. Once the clustering 
process has completed, the minimum, median and 
maximum IDDQ current values are plotted for the cluster 
containing the most number of ICs. If the IDDQ values 
satisfy the following criterion  
 

(Imax – Imed) ≤ 3 (Imed – Imin)       -       (1) 
 
where Imax is the maximum IDDQ current value among all 
the ICs in that lot, Imed is the median IDDQ current value for 
all the ICs in that lot and Imin is the minimum IDDQ current 
value among all the ICs in that lot, then no further 
clustering is required. If the above criterion is not satisfied 
with the initial number of clusters then the number of 
clusters is increased by a factor of two and clustering is 
repeated.  
 
Alternatively, the test engineer can view the formatted 
results of the clustering process to make a decision if 
further clustering is required. In this approach, the ratio of 
the (Imax - Imed) to the (Imed - Imin) is plotted for all the 
clusters.  This ratio can also be termed as the cluster 
tightness. Depending upon the test engineer’s quality and 
yield requirements, a decision can then be made as to 
whether further clustering is required. 
 
3.3 Test Decision 
 
A test decision is made on a cluster-by-cluster basis as 
opposed to an IC-by-IC basis. That is if a cluster is 
considered good, then all the ICs in that cluster are 
classified as good and vice versa. In order for a cluster to 
be classified as good, two criteria have to be met 
 
 Imean ≤   (µ + x σ)  - (2) 
 Imax  ≤ 4(µ + x σ)  - (3) 
 
where Imean is the mean of all the IDDQ current values for 
all the ICs in the cluster, µ is the mean of all the IDDQ 
current values for all the ICs in the lot, σ is the standard 
deviation for all the IDDQ current values for all the ICs in 
the lot and x is a quality factor. The quality factor affects 
the yield as well as the quality of the test process. A lower 
quality factor will decrease yield but fewer bad test 
decisions are made on defective ICs.  
 
A test engineer can also view the formatted results of the 
cluster analysis and make a test decision on each cluster. 
In this approach the ratio of % rejection is plotted against 

the IDDQ value. The test engineer can then make a test 
decision visually. The advantage to this approach is that 
the engineer can make a decision based on his yield 
requirements without compromising the test quality.  
 
4. Results 
 
The results obtained after applying the above approach to 
a lot containing 725 ICs are provided below. Initially the 
number of clusters was set at 5. This number was not 
sufficiently high enough to satisfy (1). The number of 
clusters was then progressively increased from 5 to 10 
and then 20. The cluster analysis performed with number 
of clusters set at 20 provided acceptable results. The test 
decision process also became substantially easier with 20 
clusters. The interim results obtained with the cluster 
number set to less than 20 are also provided.  
 
4.1 5 Clusters 
 
This section discusses the results obtained after cluster 
analysis with all the 725 devices classified into 5 clusters. 
Figure 1 shows the distribution of the IDDQ currents over 5 
clusters. On the X-axis, the number of devices grouped 
into each cluster is shown. On the Y-axis, the IDDQ 
distribution of all the devices in that cluster is shown. To 
protect proprietary data, we have normalized the IDDQ 
values in this paper, hence the absence of units for IDDQ 
values. This is a range as opposed to a single value due to 
the fact that all the measurements across 30 vectors are 
being depicted. The minimum, maximum and median 
IDDQ values are also shown in the figure. This is a range as 
opposed to a single value due to the fact that all the 
measurements across 30 vectors are being depicted. The 
minimum, maximum and median IDDQ values are also 
shown in the figure with the block corresponding to the 
maximum value, the diamond to the minimum and the 
dash to the median value. 
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Figure 1: 5 Cluster Statistics 
 
Assuming that the majority of the ICs in the lot were 
probably good and a small percentage being defective, it 
is difficult to make a test decision on any of the clusters 
by looking at figure 1. There is no cluster that has a 
current distribution markedly different from the other 
clusters. 
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Figure 2: 5 Cluster Tightness 
 
It is obvious from figure 2 that the largest cluster (5) is 
not very tight. Thus the decision to perform further cluster 
analysis with an increased number of clusters is the 
logical extension to this exercise.  
 
Even though a majority of the ICs in the lot were 
classified into cluster 5, given the fact that the minimum 
and median IDDQ current values for this cluster are very 
low and the difference between them is minute, the 
maximum IDDQ current value is very high and difference 
between the median IDDQ and the maximum IDDQ currents 
is unacceptable. Hence cluster 5 cannot be classified as 
being good.  
 
The logical explanation for this anomaly would be that 
there is an IC whose current distribution over the majority 
of the vectors closely mirrored the current distributions of 
the other ICs in the same cluster but there was defect that 
was being excited by a few vectors, possibly as few as 1 
vector. Such an IC is termed as an outlier. Again this 
points to the need for further clustering. 
 
4.2 10 Clusters 
 
This section describes the results obtained after 
classifying ICs from the same lot into 10 clusters. All the 
descriptions for the tables and the figures are the same as 
those discussed for the results obtained after clustering 

into 5 clusters and for purposes of brevity have not been 
repeated in this section. 
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Figure 3: 10 Cluster Statistics 
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Figure 4: 10 Cluster Tightness 

 
As can be seen from figures 3 and 4, there was an 
improvement in the results obtained after cluster analysis. 
This can be easily explained by the fact that as the cluster 
number is increased progressively, the outliers that would 
have otherwise been classified into a larger cluster are 
now classified into a cluster on their own.  While some 
clusters (1, 2, 3, 4, 5, 7, 9 and 10) can easily be identified 
as containing defective ICs, the largest 2 clusters, 6 & 8, 
while having a low minimum and median IDDQ current 
values, are still not tight enough. In other words, the 
maximum IDDQ current values are still beyond the 
acceptable range. A few outliers that need to be classified 
into a different cluster cause these elevated levels of IDDQ 

currents. Thus further cluster analysis is required to flush 
out these outliers and obtain a set of clusters that can be 
easily classified as either good or defective.  



 
 
4.3 20 Clusters 
 
This section describes the results obtained after 
classifying ICs from the same lot used before into 20 
clusters. All the descriptions for the figures are the same 
as discussed in section 4.1 and for purposes of brevity 
have not been repeated in this section.  
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Figure 5: 20 Cluster Statistics 
 
As we can see from figure 6, the 3 largest clusters (3, 13 
& 18) are also among the tightest clusters. Further, these 3 
clusters have relatively low maximum IDDQ current 
values. This negates the need for further clustering.  
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Figure 6: 20 Cluster Tightness 
 
In order to make a test decision, the test engineer can use 
one of two methods. He can either use equations 2 and 3 
or make a test decision after visual inspection of the data. 

 
While making a test decision on the clusters using 
equations 2 and 3, the test engineer has to set to determine 
the value of the quality factor. To make the least amount 
of bad test decisions, this value has to be set to 1. In order 
to meet yield requirements, this value can be incremented 
but will potentially lead to bad test decisions. In this 
exercise, both the test decision approaches classified 
cluster 3, 13 and 18 as being good and the rest defective.  
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Figure 7: Rejection Ratio vs. IDDQ Current 

 
Figure 7 shows a plot of rejection ratio vs. IDDQ mean 
current values. The percentage of devices rejected is 
plotted along the y-axis and the mean IDDQ current of the 
good devices is plotted on the x-axis. If only cluster 13 is 
classified as being good and the rest as defective, then the 
rejection ratio is 15%, that is 15% of all the ICs in this lot 
were classified as defective. The mean IDDQ current for all 
the ICs in this cluster is 0.58. If clusters 13 and 18 are 
classified as good, then rejection ratio drops to 6.6%. The 
mean IDDQ current of the good devices goes up to 0.99. 
The test engineer can use such a plot to select a threshold 
IDDQ current value for traditional IDDQ testing. He/she can 
also monitor real time, the improvements in yield and 
mean IDDQ currents as the number of clusters being 
classified as good increases or decreases. For example, 
the mean IDDQ current goes up from 0.99 to 1.72 and the 
rejection ratio drops to 3.4% if cluster 3 was classified as 
good along with clusters 13 & 18. If cluster 1 was also 
classified as good, then the increase in mean IDDQ current 
is significant while offering very little improvement in the 
rejection ratio. Thus for this exercise, cluster 1 was 
classified as defective.  
The exercise was then repeated on 3 other lots of the same 
IC and the results were very similar to the results obtained 
for this lot. 
 
 
 



 
5. Comparison and Conclusions 
 
The fundamental drawback of the ‘current signatures’  
approach proposed by A. Gattiker, et al  [6] is its inability 
to distinguish between elevated IDDQ currents produced by 
normal, non defective circuit operation and the elevated 
IDDQ currents produced by a defect in an IC. This became 
further obvious when the proposed approach was 
compared to the ‘current signatures’  method. The number 
of ICs rejected by the current signatures approach was 52 
as compared to 25 ICs rejected by the proposed approach. 
The rejection ratio for the ‘current signatures’  method was 
7.31%. Upon closer inspection of the ICs being classified 
as defective by the current signatures method and as good 
by the proposed approach, it was found that all these ICs 
were indeed displaying higher IDDQ current values for a 
single vector. After further inspection it was found that all 
the ICs in the lot were displaying elevated IDDQ currents 
for the same vector. Thus there were at least 100% more 
bad test decisions made while using the ‘current 
signatures’  method. Even though the rejection ratio was 
not significant in terms of numbers, it was twice that of 
the proposed approach and over the 4 IC lots, 
approximately 110 ICs were rejected that were actually 
classified as good by the proposed approach.  
 
A more robust, innovative approach to IDDQ testing was 
presented. The traditional IDDQ testing approach treats 
each test vector in isolation and the current signatures 
approach treats each IC in isolation. The goal of this 
approach is to identify defective ICs while keeping the 
current distribution of all the ICs in the lot over a range of 
vectors in mind. With advances in process technology and 
the design techniques, such innovative IDDQ test 
techniques are becoming essential to separate good ICs 
from defective ICs.  
 
We have demonstrated that by applying clustering on the 
IDDQ measurement data and following a few simple 
guidelines it is a fairly straightforward process to making 
a test decision. Also the proposed approach leads to fewer 
bad test decisions, hence increasing the yield. 
 
Acknowledgements 
 
The authors are grateful for the assistance of Sri 
Jandhyala at Texas Instruments. 
 

References 
 
[1]. L.K. Mourning, et al, “  Measurement of Quiescent Power 

Supply Current for CMOS ICs in Production Testing” , 
Proc. Of IEEE Int. Test Conf. 1987, pp. 300-309 

 
[2]. C. F. Hawkins, et al, “  Quiescent Power Supply Current 

Measurement for CMOS IC Defect Detection” , Proc. Of 
IEEE Trans. On Industrial Electronics, 1989, pp. 211-218. 

 
[3]. R. Perry, “ IDDQ Testing in CMOS Digital ASIC’s – Putting 

it All Together” , Proc. of IEEE Int. Test Conf. 1992, pp. 
151-157. 

 
[4]. T. W. Williams, et all, “ IDDQ Test: Sensitivity Analysis of 

Scaling” , Proc, of IEEE Int. Test Conf. 1996, pp. 786-792. 
 
[5]. Gattiker and W. Maly, “Current Signatures” , Proc. Of IEEE 

VLSI Test Symp. 1996, pp. 112-117. 
 
[6]. Gattiker, et all, “Current Signatures for Production 

Testing” , Proc. Of  IEEE Int. Workshop on IDDQ Testing, 
1996, pp. 25-28 

 
[7]. C. Thibeault, “A Histogram Based Procedure for Current 

Testing of Active Defects” , Proc. of IEEE Int. Test. Conf. 
1999, pp. 714-723 

 
[8]. C. Miller, “ IDDQ Testing In Deep SubMicron Integrated 

Circuits” , Proc. Of IEEE Int. Test Conf. 1999, pp. 724-729. 
 
[9]. S. Jandhyala, “Clustering Based Techniques for IDDQ 

Testing” , Proc. IEEE Int. Test Conf. 1999, pp. 730-737. 
 
[10]. S. Jandhyala, “Clustering Based Techniques for IDDQ 

Testing” , M.S. Thesis, Colorado State University, 1998. 
 
[11]. L. Kaufman and P. J. Rousseeuw, “  Finding Groups in 

Data” , John Wiley 1990 


