What Makes Planners Predictable?

Mark Roberts Adele E. Howe
Computer Science Dept.
Colorado State University
Fort Collins, Colorado 80523
{mroberts, howe } @cs.colostate.edu
http://www.cs.colostate.edu/meps

Abstract

In recent work we showed that models constructed from plan-
ner performance data over a large suite of benchmark prob-
lems are surprisingly accurate; 91-99% accuracy for success
and 3-496 seconds RMSE for runtime. In this paper, we ex-
amine the underlying causes of these accurate models. We
deconstruct the learned models to assess how the features,
the planners, the search space topology and the amount of
training data facilitate predicting planner performance. We
find that the models can be learned from relatively little train-
ing data (e.g., performance on 10% of the problems in some
cases). Generally, having more features improves accuracy.
However, the effect is often planner-dependent: in some
cases, adding features degrades performance. We identify
that the most prominent features in the models are domain
features, though we find that the runtime models still have
a need for better features. In the last part of the paper, we
examine explanatory models to refine the planner dependen-
cies and to identify linkages between problem structure and
specific planners’ performance.

Introduction

Performance is a function of the planner, its input (do-
main and problem description) and the platform on which
it runs. Advances in planning support solution of old prob-
lems faster and new previously unsolved problems. Thus,
performance is usually measured by number or percentage
of problems solved, and by time to solution.

The nature of the performance function is not well un-
derstood, even for well established classical, STRIPS plan-
ning. Analyses of the International Planning Competitions
(IPC) have identified relationships between the planning
entries and the problems at the time (Long & Fox 2003;
Hoffmann & Edelkamp 2005). By examining the local
search topology, Hoffmann produced both theoretical and
empirical analyses showing that many domains could be eas-
ily solved by heuristic search planners because either they
had few local minima or the heuristic was well suited to
them (Hoffmann 2004; 2005).

Today’s planners are large and complex (e.g., FF is about
20,000 lines of C). IPC problem sets have been constructed
to include increasingly difficult problems within a varied set

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Brandon Wilson Marie desJardins
Dept. of Computer Science and Elec. Eng.
University of Maryland Baltimore County

1000 Hilltop Circle
Baltimore, MD 21250
{bwilson1l,mariedj} @umbc.edu

of domains. Early on, the number of objects or goals was
increased and found to be loosely correlated with difficulty
(Bacchus 2001); more recently, Long and Fox found such
variables to be poorly correlated with difficulty and highly
dependent upon the planners (Long & Fox 2003).

To assess the state of the art in planning, an earlier
study (Roberts & Howe 2007; forthcoming) collected per-
formance data for STRIPS (and some ADL) planners on
a large suite of problems. As part of that study, machine
learning tools were used to learn models that could predict,
given problem/domain features, the success or runtime for
a planner on a particular problem. The learned models of
success were fairly accurate (mean of 97% accuracy, which
was equal to or better than the baseline of guessing failure,
sometimes much better); the learned models for time were
less accurate (RMSEs of 3.5-496 seconds).

The focus of this paper is determining what factors help to
predict performance and why performance is as predictable
as it is. Given the complexity of the planners and large suite
of problems, one might expect it to be difficult to predict per-
formance. Models of the performance function can be used
to allocate time among the planners (such as in the portfolios
of BUS (Howe et al. 1999) and HAP (Vrakas et al. 2005)),
and may lead to a better understanding of which components
of planners work well, and which could be improved. Con-
sequently, we ignore the impact of different platforms and
study other factors: how many and what types of problems,
what types of models, what types of features and what search
topology. Our results suggest that domain is paramount in
predicting success (even with few examples relative to the
dataset), but not enough for predicting time. The models ap-
pear to generalize across domains, although the influence of
specific factors on predictability is idiosyncratic to particu-
lar planners. Finally, we examine some explanatory models
to try to uncover some underlying causality.

Learning the Models

We obtained the performance data from the earlier study
(Roberts & Howe forthcoming). The performance data set
was derived by running 28 publicly available planners on
4726 problems from 385 domains, which are represented
in PDDL, using the same hardware/software platform. For
each planner/problem combination, performance is mea-
sured as: whether the planner succeeded, failed or timed out

Planner | Success TO Fail Ratio | Prior | ptime
HSP-2.0r-h1plus 71 88 1269 0.05 0.95 179.4
OPTOP 86 2 1340 0.06 0.94 63.9
BlkBox-4.2 87 3 1338 0.06 0.94 21.6
R-1.1 107 303 1018 0.07 0.93 429.7
MIPS-3 110 252 1066 0.08 0.92 366.7
LPG-1.1 166 127 1135 0.12 0.88 211.7
Satplan04 194 64 1170 0.14 0.86 137.2
HSP-2.0 197 283 948 0.14 0.86 418.7
IPP-4.0 202 247 979 0.14 0.86 412.5
SimPlan-2.0 203 2 1223 0.14 0.86 40.7
IPP-4.1 210 229 989 0.15 0.85 406.1
LPG-1.2 217 109 1102 0.15 0.85 199.2
Metric-FF 566 10 852 0.40 0.60 56.4
LPG-TD 59 107 725 0.42 0.58 263.6
FF-2.3 602 76 750 0.42 0.58 139.1
FastDown 694 28 706 0.49 0.51 133.6
SGPlan-06 708 39 681 0.50 0.50 175.7

Table 1: The 17 planners, sorted by success rate (Ratio),
including counts of outcomes and mean time to termination.

(using a 30-minute cut-off) and how much time was required
to terminate. For the purpose of this paper, we restrict our
analysis to a subset of the problems (those that are challeng-
ing) and a subset of the planners (those that solved enough
challenging problems to support analysis).

Problems and planners The full problem collection was
formed from Hoffman’s problems (Hoffmann 2004), the
UCPOP Strict benchmark, IPC sets (IPC1, IPC2, IPC3 Easy
Typed, IPC4 Strict Typed and IPC5 Propositional) and 37
other problems from two other available domains (Sodor and
Stek). The majority of these problems appeared to be easy—
that is, solvable by most planners in under one second. To
make the prediction task more interesting, we define chal-
lenging problems to be those that can be solved by only one,
two or three planners or that showed a median time for so-
lution of greater than one second. The reduced set contains
1428 problems from 47 domains, with most of the problems
coming from the more recent problem sets!.

The full planner set included some old planners that were
not able to solve more recent problems. Thus, for them, the
best predictive model of success is simply to predict failure
always. We restricted our set to the 17 planners with a suc-
cess rate of at least five percent on the challenging problems.

The features Each problem instance is defined by 19 fea-
tures that can be automatically extracted from PDDL prob-
lem and domain definitions. We started with features from
previous work (Howe et al. 1999; Hoffmann 2001). We
added others that matched our intuition and removed those
that were only computationally tractable for small problems.
Table 2 lists the features in two categories: domain-specific
at the top and instance-specific at the bottom.

"'We welcome additions to this problem set.

Metrics Description
num # of operators
num # of predicates

min,mu,max arity for predicates
min,mu,max predicates in precondition
min,mu,max predicates in effects
min,mu,max negations in effects

num,ratio actions over negative effects
num # of goals

num # of objects

num # of inits

Table 2: The feature set: first column is the type of measure
being collected, the last column briefly describes the feature,
domain features at top, problem instance features at bottom.

Learned predictive models For each planner, we con-
structed a discrete classification model for success and a
quantitative model for time. We tried 32 different mod-
els from WEKA (Witten & Frank 2005), a commonly used
toolkit of machine learning algorithms. Unless we are test-
ing a specific hypothesis that requires a particular model, we
report the results for the best of the models found.

The baseline models are built from the 19 features in
Table 2. The baseline success models define two classes:
{solve/fail-to-solve} (timed-out (TO) runs are in fail-to-
solve). We present average accuracy over ten-fold cross-
validation in the column labeled SF (for Success/Fail) of Ta-
ble 3. The baseline runtime models predict runtime as a con-
tinuous value; the results for these models are shown in the
column labeled SFC (for Success/Fail/Censored) of Table 4.

Influential Factors in the Predictive Models

Our goal is to determine some of the factors that influence
the predictability of planners. We accomplish this indirectly
by augmenting or ablating the baseline models and consider-
ing the impact of the change on model accuracy. We define
model accuracy as percentage correct for the success models
and as RMSE (root mean squared error) for the time models.

The factors are: success as a binary or ternary classifica-
tion, different types of features and number of examples that
are used for training. We test the contribution of each fac-
tor using a two-tailed, paired-sample t-test to determine if
a change in accuracy is detected. A statistically significant
difference in accuracy (p < 0.05) identifies further lines of
inquiry for what is influencing model performance.

We report the results in Tables 3 and 4. Accuracy re-
sults are reported relative to a naive model that, for success,
uses the prior probability of failure across the entire data set
(“Prior”), and for time, the mean time to solution across the
entire data set (“mean.time”). Because some of the planners
have failure rates of > 92% on these problems, it could be
misleading to report a model accuracy of 90%, for example,
which might on its own be viewed as good. So with a prior
of 95%, a 90 would be listed in the table as —5. Because
we are maximizing percentage correct, positive numbers are
better for success; negative numbers are better for RMSE
(time). All t-tests are performed with respect to the most

complete classifier overall, which is SF for success models
and SFC for time models (see below for their descriptions).

Should time-outs be handled separately?

Including timed-out (TO) runs as failures may bias the learn-
ers away from good models because a planner may have
solved the problem, given more time. A timed-out run is
considered to be right-censored, a distinction inspired by
survival analysis (Elandt-Johnson & Johnson 1980). To an-
swer the question of whether time-outs matter, we model
success as a ternary variable.

Column SFC of Table 3 shows that accuracy drops a mod-
est amount overall when predicting success as a ternary re-
sponse. A paired-sample t-test indicates that the difference
is significant (¢ = —4.90,p ~ 0.000). It seems likely that
TO is not that distinguishable from failed cases.

Which features contribute to accuracy?

We hypothesize that the function relating planner to perfor-
mance is fairly complex and so more features are needed for
better predictions. In this section, we examine the contribu-
tion of different types of features: outcome, PDDL require-
ments, problem instance, domain, and causal graph.

“Success” in the time models The baseline runtime
model (“SFC” column) includes only features extracted
from the problem and domain description. We observe high
variance in the runtimes with distributions that appear log-
normal with long tails, and that planners tend to fail quickly
(e.g., ran out of memory), except for time-outs.

Consequently, for a more comprehensive model, we tried
adding binary success (whether a run succeeded or failed) as
a feature (the SF column of Table 4). We find that including
success lowers mean RMSE by 45 seconds on average com-
pared to the No Success (NS) model. Using the ternary suc-
cess feature (in Table 4, column SFC) significantly improves
the average RMSE of the models by about 32 seconds over
SF (t = 3.11,p = 0.007). Because SFC is more complete
and accurate than the SF model, we use it as the comparator
for subsequent t-tests.

Note that we are using the actual (rather than predicted)
values for success. This choice was guided by our questions
about the value of including success as a feature and whether
time-outs matter in light of that. As a post-hoc analysis, this
allows us to address the questions and (in the future) jus-
tify layered models that would rely on a predicted value for
success. We felt that using predicted success added a con-
founding layer to understanding the impact of using success
as a feature.

Language requirements Some planners handle only
some of the PDDL/ADL requirements. Thus, one might ex-
pect particular language requirements to be critical to perfor-
mance for some planners. On the other hand, some domain
descriptions may or may not correctly report their require-
ments, which may offset any potential advantage.

We examined 13 language features that follow the re-
quirements list of PDDL (ADL, fluents, typing, etc.). To

test their contribution, we add them into the feature set
(that now totals 32 features) and train the models again
(see the LF columns of Tables 3 and 4). The overall ef-
fect was slightly (but not significantly) beneficial for runtime
(t = 1.41,p =~ 0.178) and significantly worse for success
(t = —6.09,p ~ 0.000). The success results suggest where
there may be errors in the stated language requirements for a
domain. For runtime, it suggests that either the benefits and
problems cancel out or that other features subsume these;
we view the second as more likely because we would have
expected the STRIPS planners to be more sensitive to these
features.

Problem instance features The feature set is heavily
skewed toward characterizing the domain: 16 of the features
are extracted from the domain file, while only three are from
the problem instance file. To determine the contribution of
domain and problem features, we constructed models using
only each feature subset separately and compared them to SF
(success) or SFC (time). Tables 3 and 4 list the results under
the columns labeled DOF (domain-only) and IOF (instance-
only) features.

For the success models, both feature subsets produce sig-
nificantly less accurate models. The domain features suf-
fer slightly less of a loss (3.17 versus 4.77 average accuracy
loss). So it seems that they are are more critical to success,
possibly because there are fewer problem features. Also,
prior research shows how domains can influence the struc-
ture of the search space (Hoffmann 2005). However, all of
the IOF models improve over the priors, which refutes the
hypothesis that the predictions are simply based on learning
to distinguish the domains.

For the runtime models, both subsets again degrade per-
formance, but neither is significant. As with success, the do-
main features account for most of the model accuracy; the
DOF column shows the average difference in RMSE to be
only 17.32 seconds worse. However, again, the SFC model
appears to be using more than just knowledge of the domain
to reduce the error.

Should fast runs be handled separately? Even though
we used a subset of the more challenging problems, about
62% of the planner runs still finish in under a second. We
analyze whether models trained on the full set differed from
models trained on just the instances taking over one second.
The SF.OO and SFC.OO columns of Tables 3 and 4 list the
results for models trained on the full data and tested on the
Over One (OO) data, while the O0O.00 models are trained
and tested only on the Over One data. In both cases the
success models improved by an average of about 1% ac-
curacy, although only the O0.00 model was significantly
better. For the time models, both cases were significantly
better, but the average difference in RMSE was higher for
the O0.00 model. These results suggest that there appears
to be a qualitative difference between the runs that are over
and under one second.

Learner Prior SF SFC LF DOF 10F SF.O0 00.00 SE.CG DICG 1.CG

BlkBox-4.2 rules.PART 94 4.2 3.7 0.0 35 0.0 4.9 3.4 3.6 3.5 32
FastDown trees.RandomForest 51 43.1 42.7 324 37.7 324 48.1 484 43.0 42.7 40.6
FF-2.3 trees.J48 58 | 373 359 28.3 335 28.3 29.4 36.0 35.4 35.1 33.8
HSP-2.0r-h1plus lazy.IB1 95 32 2.1 0.2 0.0 0.2 5.0 5.0 3.1 2.9 1.7
HSP-2.0 trees. LMT 86 8.5 4.1 32 4.8 32 7.2 7.0 8.8 6.8 7.0
IPP-4.0 | trees.RandomForest 86 11.5 4.8 10.7 10.6 10.7 13.5 13.5 11.8 11.7 11.7
1PP-4.1 trees.RandomForest 85 12.7 6.4 12.1 11.4 12.1 14.6 14.7 12.2 12.6 12.2
LPG-1.1 trees.RandomForest 88 8.4 6.0 49 4.9 4.9 11.5 11.2 7.6 8.0 7.7
LPG-1.2 lazy.KStar 85 11.2 9.7 59 5.7 59 9.3 11.3 10.9 9.8 8.3
LPG-TD lazy.KStar 58 | 36.0 333 27.3 32.5 27.3 39.9 404 36.0 34.5 32.4
Metric-FF lazy. KStar 60 | 34.1 335 28.7 29.6 28.7 358 37.4 33.1 335 33.6
MIPS-3 trees.RandomForest 92 4.6 1.8 4.1 1.0 4.1 7.0 7.2 3.1 3.6 3.8
OPTOP lazy.IB1 94 3.1 2.6 1.4 0.9 1.4 5.5 5.5 29 3.6 3.8
R-1.1 lazy.IB1 93 6.4 22 4.8 5.6 4.8 7.0 7.0 6.7 6.7 4.5
Satplan04 lazy. KStar 86 9.4 8.5 1.6 6.4 1.6 12.3 12.6 9.5 10.0 11.1
SGPlan-06 trees. LMT 50 | 415 39.8 333 38.7 333 45.0 39.2 38.4 40.3 404
SimPlan-2.0 trees. LMT 86 6.6 6.2 2.0 14 2.0 6.0 42 7.4 7.6 6.2
t.score — -4.90 -6.09 -8.32 -6.09 1.62 231 — -0.19 -1.80

pVal — 0.000 0.000 0.000 0.000 0.125 0.035 — 0.854 0.091

t.meanDiff — -2.53 -4.77 -3.17 -4.77 1.17 1.31 — -0.04 -0.70

Table 3: Accuracy results for the success models (out of 100) as compared to the prior. All comparisons are made against
SF. The final three columns present results for the subset of the data for which we could calculate the causal graph features
(described in the text). The bottom three rows indicate the t-test results in the form of the test statistic (t.score) the significance
(pVal) and the mean difference (t.meanDiff) from the baseline. Baselines for the tests are shown with *—’ and tests to the right

are against those baselines to the left.

Learner pu time NS SF SFC LF DOF IOF | SEFOO 00.00 | SFC.CG DICG 1.CG

BlkBox-4.2 lazy.KStar 21.64 97.3 89.5 86.0 86.1 79.0 85.9 8.2 52 80.5 83.3 89.9
FastDown lazy.KStar 133.62 79.1 -7.1 -6.8 -1.4 13.9 -9.3 -84.9 -84.9 14.4 96.7 93.7
FF-23 lazyKStar 139.08 135.3 85.8 85.1 85.2 81.2 89.4 -1.5 -27.9 105.5 130.7 147.3
HSP-2.0r-hlplus lazy.KStar 179.35 93.6 84.6 -1.7 -5.1 2.3 36.9 -25.2 -32.2 279 86.8 109.0
HSP-2.0 lazy.KStar 418.74 -59.3 | -1540 | -189.2 -1894 -1763 -175.1 -265.5 -281.7 -180.1 -35.2 -6.9
IPP-4.0 lazy.KStar 41252 | -1104 | -133.1 -1940 -191.9 -98.6 -157.1 -247.1 -260.5 -197.6 -97.0 -103.6
IPP-4.1 lazy.KStar 406.07 | -110.6 | -130.3 | -185.8 -182.2 -81.0 -171.0 -265.2 -276.7 -189.0 -91.2 -118.3
LPG-1.1 lazy KStar ~ 211.65 9.2 -24.2 -37.3 -36.5 12.2 -16.5 -74.1 -109.7 -35.0 -26.3 47.6
LPG-1.2 lazyKStar 199.15 30.8 -24.8 -34.9 -345 32 1.6 -54.6 -72.9 -30.9 532 111.8
LPG-TD lazyKStar 263.59 44.6 -28.9 -26.0 -25.6 -37.2 15.0 -200.4 -202.5 -11.2 84.8 101.4
Metric-FF lazy.KStar 56.40 118.6 89.1 75.6 75.8 83.8 80.3 34.7 19.3 113.2 126.3 129.8
MIPS-3 lazyKStar 366.67 -82.3 | -114.1 -147.6 -143.6 -157.0 -143.7 -222.4 -232.5 -131.2 24.1 50.5
OPTOP lazy.KStar 63.91 -8.1 9.2 9.2 -9.2 -7.6 32.8 -51.5 -51.5 -8.0 -3.0 49
R-1.1 lazy KStar ~ 429.67 | -2529 | -275.7 | -300.4 -300.1 -301.9 -217.7 -373.7 -375.1 -292.2 -2409 -155.7
Satplan04 lazy.KStar 137.15 151.8 129.6 107.5 109.5 135.0 43.7 -69.6 -75.1 534 97.1 76.5
SGPlan-06 lazy.KStar 175.70 650.3 454.8 291.6 291.8 225.0 593.9 28.3 1.5 273.5 727.4 855.6
SimPlan-2.0 lazy.KStar 40.69 72.3 61.7 429 429 75.1 67.5 19.0 14.3 559 74.9 92.3
t.score.row 4.00 3.11 — 1.41 1.78 1.94 -5.23 -5.82 — 3.29 3.42

pVal 0.001 0.007 — 0.178 0.095 0.070 0.000 0.000 — 0.005 0.004

t.meanDiff 76.68 31.63 — 0.57 17.37 35.34 -82.43 -94.05 — 84.87 110.40

Table 4: Accuracy results for the runtime models (as RMSE in seconds) as compared to the mean runtime across all planners.
All comparisons are made against SFC. The final three columns present results for the subset of the data for which we could
calculate the causal graph features (described in the text). The bottom three rows indicate the t-test results in the form of the
test statistic (t.score) the significance (pVal) and the mean difference from the baseline (t.meanDiff). Baselines for the tests are

shown with *—’ and tests to the right are against those baselines to the left.

Causal graph features The analysis of problem instance
features above indicates that problem features do contribute
to predictions, even when we only have three problem fea-
tures. We consider another class of problem features based
on computing metrics from the causal graph (CG). We ob-
tained the code to compute the CG from the FastDownward
planner (Helmert 2006a). The features we extracted charac-
terize the number of variables, operators, axioms, and ver-
tices in the causal graph after its translation from PDDL to
SAS+. We also include the ratio of edges to a fully con-
nected graph, the average degree, and the ratio of back edges
that persist after a (pseudo) topological sort of the graph. Fi-
nally, we include a boolean variable indicating whether the
graph is acyclic and can be solved in polynomial time.

We use the subset of 1007 problems for which the causal
graph can be computed with 2 GB of memory in less than
30 minutes. We assess the impact of these features in the
last three columns of Tables 3 and 4, where the baseline re-
sults for the 1007 problems are shown in columns SE.CG
and SFC.CG, respectively.

The results for the success models are insignificant, which
suggests that the CG features neither add nor detract from
the success models. Although the loss of accuracy is less for
the I.CG models than the IOF models. But for runtime, us-
ing all Domain-Instance-CG features (the DICG column) is
significantly worse than the baseline by an average of about
85 seconds. When only the instance and CG features (1.CG)
are used, there is an even greater (and statistically signifi-
cant) drop in accuracy of about 110 seconds, which suggests
the bulk of learning is coming from the domain features.
These results suggest that the causal graph features either
do not help or distract the models, an observation that runs
very counter to our expectations given the strength of Fast-
Downward in recent competitions. We intend to examine
this further in future work.

How many instances are required?

The next factor is the influence of the amount of data, i.e.,
number of examples. To test this question we randomly
select a hold-out testing set, S, of 20 percent of the in-
stances. The remaining 80 percent are randomly parti-
tioned into training data of 10 (approximately) equal-sized
bins (b1..b1p). From these bins, we create training sets,
T;,5 = (1..10) such that 7} includes all bins from 1 to j

T = Z:l b;). We train models (SF for success and SFC
for time) on each T} and test on the set S. This process is
repeated ten times to cross-validate the results, and the final
statistics are gathered from these ten runs.

Our results showed that model accuracy does decrease
with less training data, but that the decrease in accuracy is
not as pronounced as one might have expected. For example,
for a representative planner, FF-2.3, the failure rate for FF-
2.3 is 46 percent, and mean time is 141.48 seconds. When
only 10% of the instances (approximately 100 problems) are
used for training, the success accuracy for runtime and suc-
cess models is still well above the prior, even for the worst
of the ten runs.

Accuracy improves with more training instances. How-

ever, accuracy improvement levels off after about 80% of
the training data. Given the number of combinations of fea-
ture values and domains represented, it is somewhat surpris-
ing that performance can be predicted well using only 130
problems. Again, this may be due to the dominance of do-
main features as predictors; only one instance per domain
is needed to roughly predict for it. Indeed, at 10% of the
training data about 30 of the 47 domains have at least one
instance represented.

Analysis of Domain in Prediction

The interaction of the domain and the planner is the domi-
nant factor in predicting performance. Every planning com-
petition and many studies of planner performance are predi-
cated on this. In this section, we analyze more fully how the
domain properties affect the accuracy results.

Do the models simply learn to predict “domain”?

As shown in the last section, the problem features do con-
tribute to the success of predictions, but their influence is
not strong. We re-visit the issue of whether the models are
essentially learning the domain by first showing that it is
possible and second showing that it is valuable to do so.

To show that it is possible, we use the feature set to ex-
plicitly learn the domain. We follow the same procedure as
with performance models except that the classification was
the 47 domains. We find that the best model can classify
the domain with better than 99 percent accuracy. Several of
the domain features nearly uniquely define the domains; the
continuous values in the mean features (e.g., mu predicates
in precondition) tend to separate by domain.

To show that it is valuable, we construct models using
only the domain as a feature. Table 5 shows the accuracy
results on these models. The Domain Name Only (DNO)
models for success are not as accurate as the SF models
(-5.5% drop in average accuracy); A SF column lists the
difference in accuracy between the DNO and SF (negative
means DNO is worse). The DNO time models are much
worse (positive means DNO is worse) by about 60 seconds
on average than the SFC baseline. Thus, determining do-
main essentially determines success, but does not determine
time.

Do the models generalize across domains?

While most domains separate on key domain feature values,
a few share these values, e.g., the propositional domains all
have arity O for the predicates. Displaying the performance
data for these domains suggests that performance may be
similar as well — these domains may place similar demands
on the planners and support some generalization.

One common relationship between the domains is seen in
Depots (27 problems in the Challenge3 set), Logistics (15
problems), and Blocks (69 problems) because Depots is a
combination of Logistics and Blocks. To see whether per-
formance in one generalizes to another, we learn models in
both directions. First, we train models on the Depots prob-
lems then test them on Blocks/Logistics. Second, we train

Success Time
Planner | Prior DNO A SF | p Time DNO A SFC
BlkBox-4.2 94 0.1 -4.3 21.6 -102.0 15.9
FastDown 51 -33.6 -9.5 133.6 -106.0 112.8
FF-2.3 58 -30.5 -6.8 139.1 -85.8 0.7
HSP-2.0r-h1plus 95 1.5 -4.7 179.3 -59.4 61.1
HSP-2.0 86 -3.5 -5.0 418.7 137.1 52.0
IPP-4.0 8 -10.6 -0.9 4125 95.6 98.4
IPP-4.1 85 -11.4 -1.3 406.1 79.5 106.3
LPG-1.1 88 -5.0 -3.4 211.7 -23.4 60.7
LPG-1.2 85 0.3 -11.5 199.2 -40.2 75.2
LPG-TD 58 -27.9 -8.1 263.6 -33.6 59.6
Metric-FF 60 -259 -8.2 564 -107.9 323
MIPS-3 92 -0.2 -4.4 366.7 122.4 25.2
OPTOP 94 0.8 -39 63.9 -57.7 66.9
R-1.1 93 -4.0 -24 429.7 216.8 83.6
Satplan04 86 -0.4 -9.0 137.2 -73.2 -34.2
SGPlan-06 50 -36.7 -4.8 1757 -451.2 159.6
SimPlan-2.0 86 -1.7 -4.9 40.7 -102.0 59.1

Table 5: Accuracy of success and time models generated
from just Domain Name Only (DNO) relative to the priors
for success (Table 3) and runtime (Table 4).

models on Blocks/Logistics problems and test them on De-
pots.

For the success models trained on Depots, 10 (of 16) mod-
els had worse accuracy than the prior for Blocks and 6 were
worse for Logistics; the gap in how bad ranged from O to 80
percent. But when trained on the combined Blocks/Logistics
only 5 models had worse accuracy than the prior; the gap in
how bad ranged from 4% to 27%. For the runtime mod-
els trained on Depots and tested on Blocks, 8 had worse
RMSE (from 3-1840 seconds); when tested on Logistics,
11 were worse (from 7-1400 seconds). When trained on
Blocks/Logistics and tested on Depot, 9 models were worse
(from 17-460 seconds).

Even with the mixed results there seems to be a trend to-
ward generalization across domains. The models trained on
Blocks/Logistics perform better with lower variance than the
other way around. But models trained on the more general
Depots problems seem to have trouble with specific sub-
problems; this is probably due to the low number of prob-
lems for Logistics and Depots.

Is search topology a factor of model accuracy?

The most extensive topological analysis for classical plan-
ning is that of Hoffmann. To assess whether the taxonomy
is a factor in the models, we group the problems by Hoff-
mann’s taxonomy (Hoffmann 2005) and analyze how suc-
cess model accuracy changes for particular planners.

We have summarized Hoffmann’s taxonomy in Table 6.
Domains either have local minima (MT) or do not (ML),
and some domains that lack minima also have benches with
a median exit distance less than a constant (MB). Along the
dead-end axis, the topology divides domains according to
the presence of dead-ends. If dead-ends do not exist, the
transition graph is either undirected (HC) or directed but
harmless (HH). When dead-ends exist, they are heuristi-

HC HH HR HU
MT 112 197 27 388
ML 1 4 0 X
MB 15 110 240 X

Table 6: A summary table of the number of domains from
Challenge3 in each category of the taxonomy. The *x’ indi-
cates an impossible category for the taxonomy.

Training Testing Pair
Pair | MBHH MBHR MTHC MTHH MTHU
MBHH 98.2 4.6 59.8 34.0 62.6
MBHR 16.4 100.0 25.9 52.8 69.8
MTHC 273 24.6 71.4 38.6 314
MTHH 345 28.8 25.9 86.8 51.8
MTHU 39.1 87.1 27.1 59.9 96.4

Training Testing Pair
Pair | MBHH MBHR MTHC MTHH MTHU
MBHH 99.1 67.1 89.3 39.6 72.4
MBHR 81.8 97.5 99.1 53.8 42.0
MTHC 55.5 20.4 99.1 70.1 17.0
MTHH 24.5 73.8 8.0 82.7 78.4
MTHU 40.0 65.0 7.1 66.0 98.2

Table 7: The success rates for training and testing on each
combination of the taxonomy categories for which there
were at least 100 problems. The top sub-table shows FF
and the bottom sub-table shows LPG-TD.

cally recognized (HR) or heuristically unrecognized (HU).
Note that the ordering of the taxonomy categories listed in
the caption implies that problems in the MT:HU pairing are
among the most challenging while those in the lowest pair-
ing MB:HC are among the most simple.

We learned models of hType and mType based on the fea-
tures from Table 2. Table 7 shows the results for FF (top) and
LPG-TD (bottom). FF exhibits a trend that within a group-
ing (along the diagonal) the accuracy is high, but across
groupings (the off-diagonal entries, among others), the accu-
racy drops considerably. This trend is similar for MetricFF
and SGPlan (not shown), but not as strong for LPG-TD (bot-
tom sub-table), which uses a heuristic distinct from the FF
family. These results suggest that, in part, domain is still
a strong indicator of performance, but that the taxonomy is
also factor into the accuracy of the success models.

Explaining Model Performance

In this section, we develop explanatory models of planner
performance, using a variety of machine learning techniques
to analyze the influence of problem and domain features on
performance. We summarize some key findings of three
such techniques: single best feature (OneR), Cluster-Wise
Linear Regression (CWLR) and feature selection. We do
not discuss model accuracy here, but it is worth noting that
in some cases, these models (especially CWLR) outperform
the predictive models we have already discussed.

We focus the analysis on the four planners with the high-

est rates of success: FF, Metric-FF, SGPlan-06, and LPG-
TD. For most analyses, to avoid the heavy bias of very short
and very long (timed-out) runs, we also restricted attention
to runs that completed between 60 and 1700 seconds.

Single best feature

OneR selects a single best feature for classification (Holte
1993). For six of 17 the planners, OneR provided the best
model for predicting success. The feature selected by OneR
for IPP-4.1 was num.invariant.pred; for LPG-1.1 and LPG-
1.2, mu.post.oper; for MIPS-3, mu.prec.oper; for OPTOP,
num.inits; and for SystemR, mu.neg.post.oper. These plan-
ners all had success rates below 20%, and for all but one
(OPTOP), the selected feature was a domain feature, rather
than a problem feature.

For the four planners with the highest rates of success,
OneR selected mu.prec.oper as the predictor for success.
The top graph in Figure 1 shows how the successes for FF-
2.3 are strongly grouped by this feature; results for SGPlan,
1PP-4.1, LPG-1.1, LPG-1.2, MIPS-3 and R-1.1 also looked
similar to that of FF-2.3.

The mu.prec.oper feature does not yield a strong grouping
for LPG-TD (bottom of Figure 1) or for MetricFF. As dis-
cussed in the last section, the (vertical) groupings are usually
from the same domain. However, when we include runs out-
side the range of 60—1700 seconds, the groupings contain
mixed groups, especially at the lowest value of the feature
(which is 0 for many of the grounded/propositional versions
from the IPC4 and IPC5 benchmarks).

Cluster-wise linear regression models

Linear regression uses a simple statistical model of quan-
titative feature interactions to fit a hyperplane through the
set of data points in multi-dimensional space. The Cluster-
wise Linear Regression Model (CWLR) combines K-means
clustering with regression analysis to create clusters of re-
gression functions that span the feature space.

CWLR, developed by Spith (Spith 1979), identifies mul-
tiple overlapping regression functions in a given data set. To
train a CWLR model, the instances are initially partitioned
into k£ random, disjoint clusters. The algorithm then itera-
tively generates a linear regression equation for each cluster
and reassigns instances to the “best” cluster (i.e., the one
whose regression equation predicts the target value with the
smallest error). The iteration ceases after an iteration where
none of the points are reassigned or a maximum of 50 it-
erations are performed. We select the k£ with the smallest
RMSE. The final set of clusters are used to train a classifier
for predicting cluster membership when new instances are
encountered during testing.

Given the behavior of the success models, one might ex-
pect that the clusters would group around domain-like cen-
troids. However, this was not the case. In fact, the number
of clusters is much smaller than the number of domains: 3
for FF, 5 for LPG-TD, and 4 for MetricFF and SGPlan. The
overall RMSE remained competitive with (sometimes better
than) other predictive models.

To understand if domain was driving the cluster forma-
tion, we ran CWLR on the entire feature set (domain, plus

ff-2.3
X
o
o _]
© [} X
o}
9 8
0 X
— § -1 x X
[} =4 o
g X
£
g X
- X X
B 8 X o X0 o
o 4y o g o Yo
(] ox <]
| IS & 8 ° go
o° o o e
8 o 8
o @ o 8 Dg o °
° T T T T T
0.4 0.6 0.8 1.0 1.2
mu.prec.oper (scaled)
Ipg-td-1.0
X o
X
X
¥ ¥ ° x x x X
X oX X
=~ 9 X
() o] (o]
E S ® o
E=3 o x X X X
= X o X 0 9
o | 8 g B 8 x 0.
o (o] XXX,
o oo XX% XXy XX
o o Xx 0 o
[OO&X X)
o BB Boo
o g%o 0 O x © o
° T T T T
0.5 1.0 1.5 2.0

mu.prec.oper (scaled)

Figure 1: The transformed runtime of planner instances for
FF-2.3 (top) and LPG-TD (bottom) as they relate to a fea-
ture that sometimes groups domains, mu.prec.oper, which
has been scaled to a t-value. ‘o’ indicates a successful run,
while ‘x’ indicates a failed run.

instance, plus CG) then plotted the instances by the first two
principal components. We then labeled the points accord-
ing to their cluster classification but colored them by do-
main. The plots revealed strong linear associations between
the principal components that mostly lined up with the clus-
ters. However, the plots also showed clearly that the clusters
are not centered strongly around domain; a single domain
frequently shows up in multiple clusters. We believe this
indicates that the runtime models are likely leveraging inter-
domain knowledge that the success models are not using.
Further analysis of the regression models associated with
the clusters shows that the clusters for some planners are
far more accurate than the overall model accuracy indicates.
This happens because the classifier is not able to reconstruct
the concept that led to the original clustering. Accurate clus-
ter models show that some planners have distinct behavior
in different areas of the feature space. Therefore a single,
accurate model of runtime actually requires several underly-
ing models to predict performance in these different areas.
Even though the CWLR model itself does not always make
accurate predictions, the accuracy of the individual cluster

models serves to explain why the runtime for some planners
is much more difficult to predict than success.

Feature selection

Feature selection focuses attention on the strongest or most
individually salient features. We applied all-subsets selec-
tion using Mallow’s C), criterion, which favors smaller mod-
els (Kutner et al. 2005). The selection algorithm performs
branch-and-bound search over all of the features (using the
“leaps” package in R). The full model used the original 19
domain and instance features plus success as an indicator
variable; note that the feature count (21) includes the inter-
cept term. The response was log-transformed (we added a
small constant to zero time entries). Most of the final mod-
els used almost all (17-19) of the features. Only one planner,
R-1.1, used 13 features. The most commonly omitted fea-
ture was num.operators (used in only four models). Four
features were always used: mu.params.pred, mu.post.oper,
ratio.neg.post.oper, and success.

Discussion

Nearly all the analyses point to the importance of the do-
main in success predictability — a planner either solves the
problems in a particular domain or it fails on them. Because
we have a relatively small set of domains, each has a unique
signature, as a combination of the domain features.

Planner time is harder to predict because time can vary
significantly across problem instances. Times do somewhat
separate by success. Both domain and instance features en-
hance predictability, but in a planner-dependent way.

Models for some of the planners show generalization
across domain. For example, some planners do not need
the full signature for the domain. We also find evidence of
generalization across specific domains that are designed to
be similar.

Hoffmann’s topology and the explanatory models offer
some guidance of how the domain drives performance. Such
analyses must link the planner to the domain, as is done in
connecting the h™ heuristic to Hoffmann’s problem taxon-
omy. The CWLR clusters suggest that the runtime models
are using some underlying inter-domain knowledge.

Understanding the factors for predicting performance
within and across domains remains a challenge — especially
for the runtime models. Two issues must be explored fur-
ther. First, the results of the explanatory models are in-
triguing, but clearly incomplete. We will be further analyz-
ing what the clusters may reveal, considering other related
analyses (e.g., Helmert’s complexity analysis of the domains
(Helmert 2006b)) and deriving additional features designed
for specific planning algorithms/heuristics. However, this
analysis is limited by the relatively small domain set, the
lack of overlap in some of the key domain features and the
difficulty of finding problems that can be solved in more than
a second. Therefore, the second issue is that of the problem
set. Given the availability of problem generators, we will
first construct a wider set of instances that scale by parame-
ters other than the traditional ones for specific domains, and
will also work to collect and construct new domains to fill
the gaps.

Acknowledgments We wish to thank the anonymous re-
viewers for insightful and thought provoking discussion of
this work as well as for suggestions for its presentation.
Adele Howe and Mark Roberts were partially supported by
AFOSR grant FA9550-07-1-0403.

References

Bacchus, F. 2001. Aips’00 planning competition. Al Mag-
azine 3(22):47-56.

Elandt-Johnson, R. C., and Johnson, N. L. 1980. Survival
Models and Data Analysis. New York: Wiley and Sons.

Helmert, M. 2006a. The fast downward planning system.
Journal of Artifical Intelligence Research 26:191-246.

Helmert, M. 2006b. New complexity results for classi-
cal planning benchmarks. In Proc. of the ICAPS-06. AAAI
Press, Menlo Park, California. Cumbria, UK. June 6-10.,
52-61.

Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelli-
gence Research 24:519-579.

Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis. In Proceedings of 1J-
CAI'0l., 453-458. Seattle, Washington, USA: Kaufmann.

Hoffmann, J. 2004. Utilizing Problem Structure in
Planning: A local search approach. Berlin, New York:
Springer-Verlag.

Hoffmann, J. 2005. Where ignoring delete lists works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685-758.

Holte, R. C. 1993. Very simple classification rules perform
well on most commonly used datasets. Machine Learning
3:63-91.

Howe, A.; Dahlman, E.; Hansen, C.; Scheetz, M.; and von-
Mayrhauser, A. 1999. Exploiting competitive planner per-
formance. In Proc. 5th European ECP-99. Springer, LNCS,
1809. Durham, UK, September 8-10.

Kutner, M.; Nachtsheim, C.; Neter, J.; and Li, W. 2005.
Applied Linear Statistical Models. McGraw Hill.

Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artifi-
cial Intelligence Research 20:1-59.

Roberts, M., and Howe, A. 2007. Learned models of
performance for many planners. In Working Notes of
ICAPS2007 Workshop on Al Planning and Learning.

Roberts, M., and Howe, A. forthcoming. Learning from
planner performance. Artificial Intelligence.

Spidth, H. 1979. Algorithm 39 Clusterwise linear regres-
sion. Computing 22(4):367-373.

Vrakas, D.; Tsoumakas, G.; Bassiliades, N.; and Vlahavas,
I. 2005. Intelligent Techniques for Planning. Idea Group.
chapter Machine Learning for Adaptive Planning, 90-120.

Witten, 1. H., and Frank, E. 2005. Data Mining: Practi-
cal machine learning tools and techniques. San Francisco:
Morgan Kaufmann, 2nd edition.

