
Directives for Composing Aspect-Oriented Design Class Models

Y. R. Reddy, S. Ghosh, R. B. France, G. Straw, J. M. Bieman, N. McEachen, E. Song, G. Georg
Contact Email: ghosh@cs.colostate.edu

Computer Science Department
Colorado State University
Fort Collins, CO 80523

Abstract. An aspect-oriented design model consists of a set of aspect models and a primary model. Each aspect
model describes a feature that crosscuts elements in the primary model. Aspect and primary models are composed
to obtain an integrated design view. In this paper we describe a composition approach that utilizes a composition
algorithm and composition directives. Composition directives are used when the default composition algorithm is
known or expected to yield incorrect models. Our prototype tool supports default class diagram composition.
Keywords: Aspect Oriented Modeling, Composition directives, KerMeta, Metamodel, EMOF, Signature, UML.

1 Introduction

Design features that address dependability concerns (e.g., security and fault tolerance concerns) may crosscut
many elements of a design model. The crosscutting nature of these features can make understanding, analyz-
ing, and changing them difficult. This complexity can be better managed through the use of aspect-oriented
modeling (AOM) techniques that support separation and composition of crosscutting features [1].

In the AOM approach that we developed [1], an aspect-oriented design model consists of a primary model
and one or more aspect models that each describes a feature that crosscuts the primary model. Aspect models
are generic descriptions of crosscutting features that must be instantiated before they can be composed with
the primary model. An integrated view of an aspect-oriented design model is obtained by composing the
instantiated aspect models and the primary model. Instantiated aspect models and primary models consist
of UML [2] models. Composition of the models involves merging UML models of the same types. For
example, the class model in an instantiated aspect model is merged with the class model in a primary model.
In previous work, a name-based composition procedure was used to merge UML models [1]. Model elements
with the same name are merged to form a single element in the composed model. The composition procedure
assumes that elements with the same name represent consistent views of the same concept. This may not
always be the case. For example, consider an aspect-oriented design consisting of a primary model that
describes a class representing a server that provides unrestricted access to services via operations in the
class, and an instantiated aspect model that describes the same server class with access control features. In
this case, simple name-based merging of the two classes and the operations in them could lead to operations
that are associated with inconsistent specifications (a primary model operation and its corresponding aspect
model operation would have the same name but different argument lists and specifications). Often, a more
sophisticated form of composition is needed to produce composed models with required properties. To meet
this need we proposed the use of composition directives to ensure that the name-based composition procedure
produces desired results [3].

This paper extends previous work by introducing (1) a more general form of model element matching that
is based on the notion of model element signatures, (2) a composition metamodel with behavioral features
that specify how UML elements are composed, and (3) new forms of composition directives. In this paper we
illustrate how a signature-based composition procedure can be used to compose class models and describe
how composition directives can be used to ensure that the composition procedure produces desired results.



We have developed a prototype tool that implements the class model composition behavior specified in the
composition metamodel [4].

The remainder of the paper is organized as follows. Section 2 gives an overview of signature-based model
composition and composition directives. Section 3 describes the composition metamodel. Section 4 describes
the composition directives and provides illustrations of their use. Related work is discussed in Section 5 and
Section 6 presents conclusions and plans for future work.

2 An Overview of Signature-Based Model Composition

A primary model in an aspect-oriented design model consists of one or more UML models that each describes
a view of the core functionality. The core functionality determines the dominant structure of a design. Aspect
models consist of UML model templates that describe generic forms of crosscutting features as patterns. An
aspect model must be instantiated to produce a model that can be composed with a primary model. An
instantiation of an aspect model, called a context-specific aspect model, describes the form the feature takes
in a part of the design. Instantiating an aspect model involves binding the aspect model’s template parameters
to application-specific values.

A single aspect model may have to be instantiated multiple times for a given application. For example,
consider the case where a decision has been made to make an application design fault tolerant and highly
available by replicating critical resources such as data repositories and service providers. Incorporating the
crosscutting replication feature into the (primary) design model proceeds as follows:

1. An aspect model describing the replication feature for a generic resource is developed or acquired.
2. The replication aspect model is instantiated multiple times. Each instantiation is a context-specific aspect

model that describes the replication feature for a specific application resource.
3. The context-specific aspect models are composed with the primary application model to produce a design

in which specified resources are replicated.

In our previous work we developed a composition procedure that used model element names to identify
the elements that are to be merged. Model elements of the the same syntactic type and with the same name
are merged to form a single model element. Naming conflicts can be avoided if there is a managed namespace
from which values used to bind aspect models and to name primary model elements are obtained. We refer
to such a namespace as the application domain namespace [1]. Unfortunately a managed namespace is often
not available in design development environments, and thus naming conflicts may occur.

2.1 Matching Model Elements using Signatures

Name-based composition is relatively easy to implement but as a matching criterion, it can be too permissive
in some cases. For example, matching operations using only their names could lead to merging problems
when the operations have incompatible return types or when the argument lists differ. Similarly, matching
attributes using only their names can lead to merging problems when the types associated with the attributes
are incompatible. One would like to have matching criteria that take into consideration additional properties
of the elements being matched. For example, one should be able to express a matching criterion for attributes
that requires matching attributes to have the same name and type. The need for finer-grained matching criteria
led to the development of the signature-based composition approach described in this paper.

The signature-based composition procedure merges information in model elements with matching sig-
natures to form a single model element in the composed model. A model element’s signature is defined
in terms of its syntactic properties, where a syntactic property of a model element is either an attribute or

2



an association end defined in the element’s UML metamodel class. For example, isAbstract is a syntac-
tic property defined in the metamodel class called Class. If an instance of Class is an abstract class then
isAbstract � true for the class, otherwise the instance is a concrete class (i.e., isAbstract � f alse).

The signature of a model element is a collection of values for a subset of syntactic properties defined in
the model element’s metamodel class. The set of syntactic properties used to determine a model element’s
signature is called a signature type. For example, the signature type for an operation can be defined as a
set consisting of the following properties defined in the Operation class: name (value is the operation’s
name) and ownedParameter (value is the collection of parameters associated with the operation). Using this
signature type, the signature of an operation update

�
x : int � y : int � is the set � update � � x : int � y : int ��� . If

this signature is used to match operations, two operations match if and only if they have the same name and
parameter list. If the signature type of an operation consists only of the operation name, then the signature
of the operation is � update � . Use of this name-only signature type results in a weaker matching criterion for
operations: two operations match if and only if they have the same name.

A signature type that consists of all syntactic properties associated with a model element is called a com-
plete signature type. Complete signature types require that matching model elements have equivalent values
for all syntactic properties (i.e., the matching elements must be syntactically identical). Complete signature
types are typically used for matching contained model elements such as class attributes and operation pa-
rameters. Composite model elements that contain a variety of model elements (e.g., classes) tend to have
signature types that are not complete.

Model 2
Model 1


name:String

address:String


Customer

Account


updateAcct()


name:String


Customer


(a)
 (b)


...

...


Composed Model 2 (faulty model)


Account


updateAcct()


name:String


Customer


(d) Merging using a signature consisting of class names, attributes

and operations. Result is a faulty model in which two different


concepts are represented by classes with the same name


name:String

address:String


Customer

...


Composed Model 1


Account


updateAcct()


name:String

address:String


Customer


(c) Merging using a signature consisting only of class names.

Customer classes in Model 1 and Model 2 are merged


...


Fig. 1. An Example of Model Element Matching and Merging

If two model elements of the same syntactic type1 have the same signature, then their properties are
merged to form a single model element of that syntactic type. As an example, consider a model, Model 1,
containing a concrete class named Customer with attributes name and, address, (see Fig. 1(a)) and another
model, Model 2, which contains a concrete class named Customer with an attribute name and a reference to
an Account object (see Fig. 1(b)). If the signature type used to compose the classes in Fig. 1(a) and Fig. 1(b)
consists of the class name property and the isAbstract property then the two classes match (they have the same

1 The syntactic type of a model element is the class of the model element in the UML metamodel

3



name and they are both concrete) and their contents are merged to form a single class. The issue of merging
syntactic properties that are not part of a model element’s signature type arises in this case. The matching
classes in this example have different attribute, operation and association end sets. Merging the constituent
model elements involves matching them using signature types defined for the elements. The constituent
elements that are matched are merged in the composed model. Those elements that are not matched are
included in the composed model.

The composed model shown in Fig. 1(c) is obtained by using complete signature types for attributes,
operations and association ends:

– The attribute name : String in Model 1 and Model 2 match and is included once in the composed model.
– The attribute address : String in Model 1 does not appear in Model 2 and thus is not matched. It appears

in the composed model.
– The operation updateAcct

� � in Model 2 does not appear in Model 1 and thus is not matched. It appears
in the composed model.

– The association and the class Account in Model 2 do not appear in Model 1 and thus are not matched.
They are included in the composed model.

The use of particular signature types can lead to models that are not syntactically well-formed in some
cases. For example, consider the case in which the signature type for class is defined as consisting of the
following properties: Name, isAbstract, and ownedAttribute. Two classes match using this signature
type if and only if they have the same name, are both abstract or are both concrete, and they have the same
set of attributes and association ends. If this signature type is used to compose the class models shown in
Fig. 1(a) and Fig. 1(b), then the result is shown in Fig. 1(d). The model is not well-formed because there are
two classes with the same name in the same namespace.

To resolve the above problem one must understand the intent behind the signature type. If it is determined
by the modeler that the signature type correctly reflects the syntactic form of classes that represent the same
concept, then the problem is resolved by renaming either the Customer class in Model 1 or the Customer class
in Model 2. As will be described later in this paper, this can be accomplished by using a rename composition
directive. On the other hand, if the modeler determines that the classes actually represent similar classes then
the signature type must be changed so that the classes are matched.

2.2 Identifying and Using Composition Directives

The composition approach that we have developed utilizes a signature-based composition algorithm and
composition directives. In some cases, sole use of the algorithm will produce models with undesirable prop-
erties. This is the case when the views described by the models contain inconsistent information. In some
cases, the problems can be resolved by syntactically tweaking the models that are involved in the composition
or by overriding some of the composition rules. Composition directives can be used for these purposes.

Fig. 2 shows activities related to identifying and using composition directives. The activity diagram
shows how the relationship among three activities: the composition activity (Compose aspect and Primary
models), the model analysis activity (Analyze Composed model) and the directives identification activity
(Identify Composition Directives). The composition activity, Compose aspect and Primary models, takes in
three inputs: a primary model, a non-empty set of context-specific aspect models, and a (possibly empty) set
of composition directives. In this activity, the aspect and primary models are composed using the algorithm
and composition directives to produce a Composed model. The matching and merging procedure used by the
composition algorithm is capable of detecting conflicting syntactic property values associated with matching
model elements. For example, if two matching classes have different values for the isAbstract property, a
conflict is flagged.

4



Analyze
Composed model

Properties
to Verify

Primary model
[Problems identified

[No problems 
identified]

during composition]

[Problems identified]

[No problems 
identified]

Context−specific
aspect models

Composed model

Composition Directives
Identify ApplicableCompose

Aspect and
Primary models

Composition
directives

Fig. 2. Using composition directives to resolve composition problems

After composition, the composed model can be formally analyzed against desired properties (referred
to as Properties to Verify in Fig. 2) to uncover design errors. For example, one can analyze the models
against well-formedness rules to identify badly formed models or one can analyze the models against desired
semantic properties (e.g., “only the owner of a file can delete the file”). In related work, we developed a
technique for uncovering semantic problems during composition [5]. In the approach, the semantic property
to be verified is used in the composition process to generate proof obligations. Establishing that a composed
model has the stated semantic properties requires discharging the proof obligations.

In some cases, the uncovered problems can be resolved using composition directives. In these cases
an appropriate set of directives are identified and used to compose the context-specific aspect and primary
models. In other cases, more substantial changes may be required. For example, it may be determined that
another variant of the aspect model is needed or that the primary model has to be significantly refactored.

This paper focuses on the Compose Aspect and Primary models activity shown in Fig. 2. Activities
related to analysis of models to uncover problems and the identification of composition directives is not
within the scope of this paper.

2.3 Examples of Applying Composition Directives

Composition directives can be classified as Model Directives and Element Directives. Model directives are
used to determine the order in which multiple aspect models are composed with a primary model. Element
directives are used to determine how an aspect model is composed with a primary model. Element directives
can be classified in terms of when they are applied in the composition process:

5



– Pre-Merge Directives: These directives are used to carry out simple modifications of the models before
they are merged. For example, one can rename model elements, delete model elements, or replace model
elements (delete and add model elements) in the primary or context-specific aspect models.

– Merge Directives: These directives are used to override rules for merging model elements. For example,
one can specify that a model element in one model completely replaces an element in another model.

– Post-Merge Directives: These directives are used to carry out simple modifications on the model produced
after merging possibly modified primary and context-specific aspect models. The directives for renaming,
adding, deleting, and replacing model elements also fall into this category.

In the remainder of this section we provide examples of composition problems that can be resolved using
composition directives. It is important to note that the composition approach discussed in the following sec-
tions does not provide systematic techniques for analyzing composed models nor for identifying appropriate
composition directives once problems are uncovered. As stated earlier, the composition algorithm will flag
cases where conflicting syntactic properties exist for model elements that are merged. It does not, however,
detect semantic conflicts that can arise as a result of inconsistent specifications of behavior or other semantic
properties. Uncovering such semantic properties requires formal semantic analysis of the composed model.

writeBuff()


WriterBuffer


addToStream()


FileStream


writeLine()


Writer


pre: true

post: wbuffer^writeBuff(?)

post: fstream^addToStream(?)


wbuffer


bfstream


pre: ...

post:

bfstream^addToStream(?)


fstream


(d) Composed Model


writeBuff()


<<Buffer>>

WriterBuffer


addToStream()


<<Output>>

FileStream


writeLine()


<<BufferWriter>>

Writer


pre: true

post:

wbuffer^writeBuff(?)


wbuffer


bfstream


pre: ...

post:

bfstream^addToStream(?)


(c) Context-Specific

Aspect Model


|write()


<<Class Template>>

|Buffer


|write()


<<Class Template>>

|Output


|write()


<<Class Template>>

|BufferWriter


pre: true

post:

|buffer^|write(?)


|buffer


|output


pre: ...

post:

|output^|write(?)


(b) Buffering Aspect Model


writeLine()


Writer


addToStream()


FileStream


fstream


pre: true

post:

fstream^addToStream(?)


(a) Primary Model


Fig. 3. An Example of a Faulty Composition

6



Fig. 3 shows a simple example of a composition that leads to a faulty composed class model. In the exam-
ple, a modeler creates a primary model (see Fig. 3(a)) in which an output producer (an instance of Writer)
sends outputs directly to the output device it is linked to (instance of FileStream). The modeler then decides
to incorporate a buffering feature into the model by instantiating a buffering aspect model. Fig. 3(b) shows
the class diagram template that is part of the buffering aspect model. The aspect model describes how enti-
ties that produce outputs (represented by instantiations of BufferWriter) are decoupled from output devices
through the use of buffers . Template parameters are preceded by the symbol “ � ”. The operation templates
|write() in |Buffer and |BufferWriter are associated with template forms of operation specifications
[1].

To incorporate the buffering feature into the primary model, the modeler must first instantiate the aspect
model to produce a context-specific model. Instantiating the buffering class diagram template produces a
class diagram that describes how buffering is to be accomplished in the context of the primary model. The
class diagram shown in Fig. 3(c) is obtained from the buffering class diagram template using bindings that
include the following:

(|Buffer<-WriterBuffer), (|Output<-FileStream), (|BufferWriter<-Writer),
(|BufferWriter::|write()<-writeLine()), (|Buffer::|write()<-writeBuff()),
(|Output::|write()<-addToStream())

The result of composing the class diagram shown in Fig. 3(c) with the primary model class diagram
shown in Fig. 3(a) is presented in Fig. 3(d). Composition is carried out by matching model elements using
signatures consisting only of model element names. If the matching model elements are associated with
invariants, the invariant associated with the merged element in the composed model is the conjunction of the
invariants in the matched elements. Operation specifications, expressed as OCL pre and postconditions, can
also be merged for matching operations. The precondition of the merged operation in the composed model
is the disjunction of the preconditions associated with the matching operations, and the postcondition of the
merged operation is the conjunction of their postconditions.

The merging of the writeLine() operations in the primary and context-specific aspect models pro-
duces an operation that calls the buffer’s write operation writeBuff() and the filestream’s write opera-
tion addToStream(). This is not the desired result: The intent is to completely decouple Writer from
FileStream using WriteBuffer. To resolve this problem, the following composition directives can be used:

– A pre-merge composition directive that removes the association between Writer and FileStream in the
primary model.

– A pre-merge composition directive that removes the operation specification associated with the writeLine()
operation in the primary model.

Once the above pre-merge directives are applied the composition algorithm is used to compose the modified
primary model with the context-specific aspect model.

As another example, consider the partial context-specific and primary class models shown in Fig. 4.
The addUser() operation in the primary model adds a user (instance of User) to a collection of users
(instance of a class User Repository). The addUser() operation in the context specific aspect model
calls the doAddUser operation only when the client calling the operation is authorized to add a user. The
doAddUser() operation adds a user to the collection. Using signatures that consist only of model element
names, the two Repository Manager classes match and thus their properties are merged. During the merge
of these two classes, the addUser() operations are matched and their specifications (not shown) are merged.
The resulting addUser() operation specification will have a semantic conflict: The specification from the

7



Repository
User

Repository
User

addUser(u:User,mID:MgrID)
doAddUser(u:User)

Repository Manager

Operation names match but specified properties conflict. 

addUser in Primary model are not the same
The properties of addUser in Context−specific aspect model and

Primary modelContext−specific aspect model

... ...

Repository Manager

addUser(u:User)

Fig. 4. Example of a Property Conflict

primary model allows unconditional adding of users, but the specification from the context-specific model
will allow adding of users only if the operation is authorized for the client. This is an example of a semantic
property conflict: A semantic property conflict occurs when two matching elements (elements with the same
signature) are associated with conflicting semantic properties. In this example, the intent is to merge the
doAddUser() operation in the context specific aspect model with the addUser() operation in the primary
model. To resolve this conflict and reflect the intent, a pre-merge composition directive that renames the
addUser() operation in the primary model to doAddUser() can be used. After this renaming, signature-
based composition will produce a composed model with the required properties.

Renaming directives can also be used to resolve syntactic naming conflicts. A syntactic naming conflict
occurs when two or more model elements representing different concepts have the same name. This class of
conflicts can be avoided by instantiating the generic aspect model such that the names do not match or by
using a pre-merge rename directive.

In some cases, post-merge directives are needed to add or delete elements in the model produced by
merging primary and context-specific aspect model to produce a model that has required properties. For
example, associations may be added between a class introduced by the primary model and another class
introduced by a context-specific aspect model to provide required access to behaviors defined in the classes,
or they may be removed to prevent access that is to be prohibited in the composed model.

With the ability to rename, add, and remove elements comes the risk of another type of conflict: The
nonexistent-reference conflict. A nonexistent-reference conflict arises when a reference in one of the models
refers to an element that no longer exists, or exists under a different name. To resolve this conflict, the
affected references in a model must be identified and updated. Composition directives that identify and
update specified references are needed.

In an aspect-oriented model that contains multiple aspect models, different composition orderings may
produce different composed models [6]. A particular ordering can lead to undesirable emergent behaviors.
For example, consider an auditing feature and a password feature that are to be composed with a primary
model. If the password feature is composed with the primary model before the auditing feature, then the
end result could be a model in which the auditing feature captures and stores passwords. This may be an
undesirable emergent behavior. Composition directives that can be used to specify the order used to compose
multiple aspects with a primary model are needed.

8



Defining composition ordering raises another type of conflict. A cyclic-ordering conflict occurs when
there is a cycle among ordering relationships defined over multiple aspects. Analysis can detect and correct
ordering conflicts.

The above discussion indicates that the following list of actions should be captured by composition
directives:

– Creating new elements.
– Adding elements to a Namespace.
– Deleting elements from a Namespace.
– Changing property values of elements.
– Finding and changing references to specified model elements.
– Specifying override relationships between matching elements.
– Changing default composition rules
– Specifying ordering relationships among multiple aspects.

The above list of actions reflects our current experience and may be incomplete.

3 The Composition Metamodel

Our composition metamodel uses static and behavioral features needed to support model composition. In
this paper, we describe the behavioral properties in terms of class operations and narrative descriptions of
the operations. Alternatively, sequence and activity diagrams can be used to describe the interactions and
activities that take place during composition.

The core part of the metamodel has been implemented using Kermeta, an open source meta-modeling
language developed by the Triskell team at IRISA [7]. KerMeta extends the Essential Meta-Object Facility
(EMOF) 2.0 [8] with an action language that allows one to describe the behavior of operations associated
with classes in a metamodel. Kermeta was used primarily because it is compatible with the Eclipse Modeling
Framework (EMF), which allows us to use Eclipse tools to edit, store, and visualize models manipulated in
our AOM approach. A more detailed description of the language is presented in [9].

EMOF 2.0 is a subset of the Meta-Object Facility (MOF) that can be used to describe metamodels using
object-oriented concepts. It utilizes concepts from UML 2.0, and thus allows one to use UML tools to build
metamodels. EMOF defines a class called Object from which all other EMOF classes inherit properties. This
class contains the following operations that will be used in the composition metamodel described later in this
section:

– The getMetaClass
� � operation returns the Class of an object.

– The container
� � operation returns the containing parent object.

– The equals
�
element � determines if the element (an instance of Element class) is equal to this Element

instance.
– The set

�
property � element � operation sets the value of the property to the element.

– The get
�
property � operation returns a List or a single value depending on the multiplicity.

The isComposite attribute defined in the EMOF class Property returns true if the object is contained
in the parent object. Cyclic containment is not possible, i.e. an object can be contained in only one other
object. The getAllProperties

� � operation in the EMOF class called Class returns all the properties (including
inherited properties) associated with a Class object.

Fig. 5 shows the core part of the composition metamodel. The metamodel contains elements from the
UML metamodel [2], but it differs from the UML metamodel in that it includes operations that specify
composition behavior.

9



merge(m:Mergeable)

sigEquals(m: Mergeable)

getSignature()


Mergeable


Signature


getMatchingElements(e:Set(Element))


Element


1
 *


sigEquals(m: Mergeable)


Operation


sigEquals(m: Mergeable)


Classifier


sigEquals(m: Mergeable)


Model
...


...


ElementDirective
 ModelDirective


execute()


CompositionDirective


PrimaryModel
 AspectModel


*


*


ComposedModel


execute()


RenameDirective


main()


Composer


1
 *


1


1


Fig. 5. Core Elements of Composition Metamodel

The core concepts shown in Figure 5 are described below:

– Element: Instances of this class are model elements. Element is an extension of the UML meta-class,
Element. It is extended by the operation getMatchingElements

�
e : Set

�
Element ��� . Operations associated

with the EMOF Ob ject class are also available in the Element class.
� Element::getMatchingElements(): This operation takes in a set of elements and returns a set of

elements that have the same syntactic type and signature as the element that invokes it. The syntac-
tic type check is performed by invoking the getMetaClass

� � and the getAllProperties
� � operations

defined in the EMOF Ob ject class. The signature is obtained using the getSignature
� � operation.

– Mergeable: This is an abstract class that characterizes model elements that can be merged. Examples of
mergeable elements shown in the figure are instances of Classi f iers, Operations, and Models.
� Mergeable::merge(): This operation merges the element with the mergeable element passed in as

an operation argument. The merge method returns a new element that is the merge of the element m
and the element on which the merge is called.� Mergeable::sigEquals(): This operation determines whether the element’s signature is equal to the
signature of another element.� Mergeable::getSignature(): This operation gets the signature of the element.

– Signature: Instances of this class are representations of signatures. Every mergeable element is associ-
ated with exactly one instance of this class.

10



The Kermeta implementation of the core parts of the composition metamodel (i.e., the metamodel ob-
tained by excluding the CompositionDirective hierarchy) treats the model elements and instances of the
other classes in the metamodel as objects (i.e., instances of the EMOF Ob ject class). The implementation
is thus written independently of model element types and it uses reflection to obtain type information. The
operations in the composition metamodel (including those defined in EMOF) were implemented using the
KerMeta action language.

The model elements are merged only when they have the same syntactic type and the same signature.
The sigEquals

� � operation is used to determine whether signatures of model elements are the same (see
appendix). Each model element type defines its own procedure for checking equality of signatures, that is,
specializations of Mergeable can override the inherited sigEquals

� � .
Merging of two matching model elements, e1 and e2, in the absence of composition directives proceeds

as follows:

– Primitive property rule: A primitive property is a model element property that must be associated with
exactly one value. The isAbstract property of classes is an example of a primitive property. The primitive
properties of matching elements must have the same values. If they have different values then a conflict is
indicated for each conflicting value. For example, if e1 and e2 are matching classes with different values
for the isAbstract property then a conflict is indicated.

– Composite property rule: This rule applies to model element properties that are associated with values
that are collections of model elements. The ownedAttribute property of a class is an example of this kind
of property. This rule has a base case part and a recursive part. The recursive part essentially applies the
merge recursively to merge the constituent parts of the property that match across the encompassing two
model elements. The base case part determines the stopping condition for the recursion. In what follows,
the composite property is referred to as p, e1 	 p refers to the collection of values associated with p in e1
and e2 	 p refers to the collection of values associated with p in e2.� Recursive part: For each constituent element in e1 	 p a search is made for a matching element in e2 	 p

(based on the signature type associated with the constituent element type). If a match is not found
then the element is included in merged form of e1 and e2. If a match is found the two matching
constituent elements are merged and included in the merged form of e1 and e2.� Base Case part: If two constituent matching elements, c1 and c2, are composites that consist of
only one model element, q, then the following occurs. If the signatures of c1 	 q and c2 	 q then c1 	 q
is merged with c2 	 q. If the signatures do not match then a conflict is indicated. For example, if two
attributes are matched using only their names, then a conflict is indicated if their types do not match.

The composition of two models (instances of Model) is started by calling the merge
� � operation in one

of the models, using the other as an argument. The main
� � method of the Composer class invokes the initial

merge. Since a Model is not a primitive type, its merge
� � operation will result in the merging of the matching

parts of the model. The algorithm for merging elements is given in the appendix.
Two types of composition directives are described in the composition metamodel. Element directives

(instances of ElementDirective) are composition directives that apply to a group of elements in a single
model. These directives can be used to add new elements, delete existing elements, rename elements, override
elements, and replace references in a model. Model directives (instances of ModelDirective) are composition
directives that are associated with a group of models. An example of a model directive is a composition
directive that specifies the order in which aspects are composed with a primary model.

Each composition directive is associated with a behavior that implements the action associated with the
directive. These behaviors are invoked by the merge

� � operations of elements before the merges of constituent
properties are attempted.

11



The Kermeta implementation of the composition metamodel currently does not support the use of com-
position directives. We are now developing such support. The pre- and post-merge directives can be viewed
as transformations on models and this is how they will be implemented in Kermeta (Kermeta was originally
designed to support specification of model transformations).

4 Composition Directives

In this section we describe the composition directives that we have identified through application of the
composition procedure on small case studies (e.g., see [10–12]). The directives can be used to modify aspect
and primary models, add new elements to composed models or to override default composition rules in order
to produce desired composed models. The directives that modify models can be viewed as transformations
on the models. Directives that affect only aspect and primary models are applied to the models before their
elements are merged. Those that add elements to composed models and those that override composition rules
are applied during merging.

Each directive (except for the directives that override composition rules) is described using the following
format:

– Directive Name: This section states the name of the directive or the form of names for a family of
directives.

– Application: This section describes the purpose of the directives and describes the entities that the direc-
tives operate on.

– Form: This section describes the syntactic form of the directives.
– Constraint: This section gives the conditions that must hold if the directives are to have the intended

effect. The constraint in this section is referred to as the directive precondition.
– Effect: This section describes the effect of the directives on their targets. The specification of effect is

called the directive postcondition.

As indicated in the composition metamodel described in the previous section, there are two types of
composition directives: Element directives and model directives. The following subsections describe the
directives in each of these categories and gives examples of their application.

4.1 Element Directives

We have identified the following element directives thus far:

– Creating new model elements (a family of directives)
– Adding model elements to a namespace
– Removing model elements from a namespace
– Changing properties (a family of directives)
– Replacing references to a model element in a namespace
– Overriding model elements
– Overriding composition rules (a family of directives)

When an element is created by a create directive, a handle that can be used to reference the element
is provided. These handles can be used in composition directives that are applied after the creation of the
model elements. The names that appear on model elements in aspect and primary models serve as references
to the model elements in directives. For example, an association name or a role name can refer refer to an
association in a directive.

12



Creating new model elements. The following describes the family of create directives.

Directive Name: create<metamodel class name>
The following are examples of names for create directives: createAssociation, createClass, where Associa-
tion and Class are the names of concrete classes in the UML metamodel.

Application: The create directives are used to create new model elements (i.e., model elements that are not
in the primary or aspect models being composed). In the composition metamodel, each concrete Element
class is associated with a constructor. The create directives use these constructors to create model elements
to ensure that the created elements are syntactically well-formed. The new element is not a member of any
namespace when it is created.

A create directive has set of operands that determines the arguments passed to the constructors of the
model elements. The operands are a set of (property name = property value) pairs, where the property name
is the name of a model element property.

Form: newHandle = create<Element> � operands �

The following is an example of a create directive that creates a concrete class with a name “NewClass”.

newClass = createClass � name = "NewClass", isAbstract = false �

The following create directives are used to create a strong aggregation relation between two existing
classes: primary::UserMgmt, and aspect::UserAuth.

userAuthEnd = createProperty � isComposite = false, aggregation = none,
type = aspect::UserAuth, opposite = userMgmtEnd, lower = 1, upper = 1 �

userMgmtEnd = createProperty � isComposite = true, aggregation = composite,
type = primary::UserMgmt, opposite = userAuthEnd, lower = 1, upper = -1 �

userAuth-userMgmt = createAssociation � name = "UserAuth-UserMgmt" ,
isDerived = false, memberEnd = 
 userAuthEnd,userMgmtEnd ���

The operands of the above directives indicate that the two association ends (property) userAuthEnd and
userMgmtEnd must be created before the association userAuth-userMgmt is created. We assign the value
of “-1” to upper (representing the upper limit of a multiplicity) where “-1” represents the multiplicity “*”.
The “ 

	�	 � ” notation is used to denote a collection of association ends in the createAssociation directive.

Constraint: There are no constraints for these directives.

Effect: A create directive provides a reference to a new model element that is valid. The new Element is not
a member of any namespace.

Adding model elements to a namespace.

Directive Name: add

13



Application: The add directive is used to add a model element to a namespace in a model. It can be used
to add a newly created model element (i.e., one created by a create directive) to a namespace and to add an
element from another namespace into a target namespace. The latter action is needed when a model element
is migrated to a new namespace in order to ensure that the composed model has required properties. Such
a migration would involve removing the element from its original namespace (using the remove directive
described later) and then adding it to the new namespace.

The add directive has one operand, the model element to be added.

Form: add owner::elem
In the above, the model element, elem is added to the namespace, owner.

Constraint: The target namespace must exist, the element to be added must have a unique name within the
namespace, and the element must be an instance of a concrete UML metamodel class that can be owned by
the namespace.

Effect: The element is in the target namespace.

Removing model elements from a namespace.

Directive Name: remove

Application: The remove directive is used to remove a model element from a namespace. It is used when the
presence of certain model elements compromises desired properties of the composed model. For example,
consider a security aspect model that requires that certain associations not exist in the composed model
because their presence can lead to leaks of sensitive information. The remove directive can remove these
associations in the primary model.

Removing a composite model element involves removing all its contained parts. For example, removing
an association involves removing its association end properties (but not the classes at the association ends).

Removing a model element can result in models with hanging references: References to the removed
element may be present in the namespace and elsewhere (e.g., in OCL expressions) after removal. Use of
the directive should be coupled with the use of other directives that take care of the hanging references. For
example, one can use the replaceOccurrences directive to replace reference to the deleted element with
references to other elements.

The remove directive has one operand, the model element that is to be removed.

Form: remove owner::elem
In the above, the model element, elem is removed from the namespace, owner.

Constraint: The namespace must exist in a model. The element must be in the namespace before the directive
is applied.

Effect: The element is not in the namespace.

Changing properties of model elements in a namespace. The family of directives for changing model
element properties are described below.

14



Directive Name: change<property name>
Examples of change directive names are changeisAbstract, and changename. The changename directive
is written more concisely as rename.

Application: The changeProperty directive is used to change the value of a model element property. This
directive can be used to force or prevent matching of model elements by changing the property values used
to determine element matches. For example, in the cases where matching is based only on the names of
elements, this directive can be used to rename elements so that they match or do not match.

This directive has two operands. The first is the model element with the property, the second is the new
value of the property.

In our case studies we often use this directive to rename model elements and thus we use a more concise
name for the directive: rename. The renaming directive is often applied to the primary model, because re-
naming of elements in the context-specific aspect models can also be accomplished by rebinding the (generic)
aspect model.

Form: change<property name> owner::targetElement to propertyValue

In the cases where the property to be changed is a model element name one can use the form below:

rename owner::targetElement to newName

Constraint: The element must exist in a primary, aspect or composed model.

Effect: The specified property value in the target model element has the new value.

Replace references to a model element in a namespace.

Directive Name: replaceOccurrences

Application: The replaceOccurrences directive is used to replace references to a model element with refer-
ences to another model element in a namespace. It is often used in conjunction with directives that add and
remove model elements. For example if an association that is referenced in an OCL expression is removed
then one can use this directive to change the reference in the OCL expression.

The replaceOccurrences directive has two operands: The first is a reference to a model element, and the
second is a reference to another model element.

Form: replaceOccurrences owner1::elem with owner2::replacementElem
The above states that references to elem in the namespace owner1 are to be replaced by references to
replacementElem in the namespace owner2.

Constraint: There are no constraints for this directive.

Effect: All existing references to the model element owner1::elem are changed to references to the element
owner2::replacementElem.

Overriding a model element. This composition directive is similar to the override relationship proposed
by Clarke et al. [13].

15



Directive Name: override

Application: The override directive defines an override relationship between two potentially conflicting
model elements. It indicates that the properties of a model element takes precedence over properties of a
matching model element during composition.

When an override relationship is defined for two model elements, the relationship propagates to the
contained model elements. The consequences of the implicit overrides may not be immediately obvious.
Explicit override relationships should be defined for contained model elements when this is feasible and
practical.

The override directive has two operands. The second operand is the model element that overrides the
first operand.

Form: override owner1::elem1 with owner2::elem2

Constraint: owner1::elem1 and owner2::elem2 must exist in separate models, one in a primary model,
and the other in a context-specific aspect model. The two elements must match.

Effect: During composition, the properties of elem1 are replaced by properties of elem2.

Overriding default composition rules. When merging matching model elements with different property
values, a composition mechanism can use default rules to determine the property values that will be used
in the composed model. For example, in previous work [5] we defined the following rules for combining
properties with different values in matching elements:

– If two matching attributes are associated with invariants, the invariant in the composed model is the
conjunction of the two invariants.

– If two matching operations have operation specifications, the composed operation has a precondition
that is the disjunction of the two preconditions and a postcondition that is the conjunction of the two
postconditions.

– If two associations match and their multiplicities are different, then the merged association uses the
weaker multiplicity constraint at each end.

Sometimes one may want to change the default rules when composing models. For example, one may
want to use the stronger multiplicity constraint at the ends of composed associations. Override composi-
tion rule directives are used for this purpose. In our approach, each rule is associated with a set of possible
variations and a directive for each variation is defined. For example, the association end multiplicity rule is
associated with the following directive:

association end multiplicity rule owner1::assocend1; owner2::assocend2 stronger

Use of this directive indicates that the stronger of the two multiplicities at the specified associations are
to be used in the composed model. One can also override the rule globally using the following directive:

association end multiplicity rule stronger

For the operation specification rule we have the following directive:

16



operation specification rule owner1::aclass1::PreSpec(anoperation1),
owner2::aclass2::PreSpec(anoperation2) conjunct

The above states that the precondition of the operation formed by merging the matching operations
anoperation1 and anoperation2 is the conjunction of their preconditions. A similar directive for postcon-
ditions is also defined:

operation specification rule owner1::aclass1::PostSpec(anoperation1),
owner2::aclass2::PostSpec(anoperation2) disjunct

Currently we have a very limited number of composition rules. In the cases where we do not have such
rules, composition results in a conflict when the property values differ. Work on providing a small and useful
set of rules and associated directives is ongoing.

4.2 Composition Examples

The following are examples of composition scenarios that require the use of directives to produce desired
results. In the examples we show the effect of directives in terms of before and after diagrams. Note that the
after diagrams are not the composed models: They show only the effect of the directives on the primary and
aspect models.

addToStream()

FileStream

pre: true
writeLine()

addToStream()

fstream

wbuffer

writeLine()

WriterFileStream

post:
fstream^addToStream(?)

Writer WriterBuffer

writeBuff()

bfstream

aspect: AspectModel

pre: true
post:

pre: 
post:
bfstream^addToStream(?)

wbuffer^writeBuff(?)

...

Primary: PrimaryModel

Fig. 6. Example 1. Before Application of directives.

Example 1: The faulty composition shown in Fig. 3 can be avoided by using composition directives that do
the following (the aspect and primary models are shown in Figure 6):

1. Remove the association between Writer and FileStream in the primary model: In the desired composed
model, all writing to the file stream is done via the buffer. The write should not have direct access to the
filestream in the composed model.

17



addToStream()

FileStream

writeLine()

addToStream()

wbuffer

writeLine()

WriterFileStream

post:
fstream^addToStream(?)

Writer WriterBuffer

writeBuff()

bfstream

aspect: AspectModel

pre: true
post:

pre: 
post:
bfstream^addToStream(?)

wbuffer^writeBuff(?)

...

fstream

pre: 

Primary: PrimaryModel

Fig. 7. Example 1. After Application of remove directives.

2. Remove the OCL specification for writeLine() in the primary model: The operation specification in the
context-specific aspect model fully specifies the desired behavior and thus the conflicting specification
in the primary model can be deleted.

The directives that accomplish the above are given below:

(1) remove primary::Writer::fstream
(2) remove primary::Writer::Spec(writeLine)

In the above, Spec(writeLine) refers to the specification associated with the operation writeLine().
Figure 6 and Figure 7 illustrate the effect of the directives on the primary and aspect model. An “X” indicates
the removal of an element.

In the example, the operation specification associated with writeLine() in the primary model contained
only a statement that refers to the deleted f stream element. If the specification had contained additional
statements that were required in the operation specification of writeLine() in the composed model, then
removal of the specification in the primary model would not give the desired result. To handle these situa-
tions, directives that replace the elements to be removed in the OCL specifications with desired elements are
needed. Such directives require technology for parsing OCL expressions. A metamodel for the OCL is cur-
rently being standardized by the Object Management Group (see http://www.omg.org/uml) and it is expected
that OCL parsers based on the metamodel will be developed soon after.

An alternative way to accomplish the above would be to use the override directive instead of the second
remove directive as shown below.

(1) remove primary::Writer::fstream
(2) override primary::Writer with aspect::Writer

Figure 8 illustrates the effect of the directives on the primary and aspect models.

Example 2: The following example, from France et al. [1], illustrates the use of the create, add, remove and
replaceOccurrences directives. The aspect model shown in Figure 9 presents a view in which add and delete

18



Writer

fstream^addToStream(?)
post:

FileStream Writer

writeLine()

wbuffer

addToStream()

writeLine()

WriterBuffer<<override>>

Primary: PrimaryModel

pre: 

fstream

...

wbuffer^writeBuff(?)

bfstream^addToStream(?)
post:
pre: 

post:
truepre: 

aspect: AspectModel

bfstream

writeBuff()

FileStream

addToStream()

Fig. 8. Example 1. After Application of remove and override directives.

user actions must be authorized before they are carried out. The primary model describes a view in which
authorization does not occur. The objective of the composition is to produce a composed model in which the
authorization behavior in the aspect is incorporated into the primary model. In Figure 9, the UserAuth class
in the aspect model performs authorization checks on clients requesting the addition or deletion of users
from the system. In the composed model, Manager client must request the add and deleter user operations by
calling the corresponding operations in UserAuth and should have no direct access to the UserMgmt class.
To accomplish this, a directive is used to remove the accesses association in the primary model:

(1) remove primary::Manager::accesses

There are references to the accesses association in Manager that must be replaced or removed. In this
case, references to accesses in the primary model must be changed to uaccesses in the context specific
aspect model, because all access to the operations is made via the uaccesses association in the composed
model. The following directive is used to accomplish this:

(2) replaceOccurrences primary::Manager::accesses with aspect::Manager::uaccesses

The definitions of the addUser and deleteUser operations in UserAuth include an authorization check.
In the aspect model, if a Manager client is authorized to carry out the add or delete action a call is made
to the respective doAddUser, doDeleteUser operations. In the described composed model, the operations
addUser and deleteUser in UserMgmt carry out the add and delete user actions, respectively. To make this
possible a composition directive that adds an association between the UserMgmt class and the UserAuth
class is used:

(3) userAuthEnd = createProperty � isComposite = false, aggregation = none,
type = aspect::UserAuth, opposite = userMgmtEnd, lower = 1, upper = 1 �

19



SystemMgmtAuthRepository

checkSysAuth(mid:MgrID,op:String)

<<datatype>>
MgrID

UID
<<datatype>>

UID
<<datatype>>

<<datatype>>
MgrID

1..*

primary: PrimaryModelaspect: AspectModel

1..*m: MgrID

Manager

m: MgrID

Manager

addUser(mid:MgrID,u:UID)

accessAuthRep

doDeleteUser(u:UID)
doAddUser(u:UID)
deleteUser(mid:MgrID,u:UID)

accessUserRep

UserMgmt

deleteUser(u:UID)
addUser(u:UID)

UserRepository

uaccesses accesses
1..1

1..1

1..1

1..1

1..1

1..1
UserAuth

Fig. 9. Example 2. Before application of directives.

userMgmtEnd = createProperty � isComposite = true, aggregation = composite,
type = primary::UserMgmt, opposite = userAuthEnd, lower = 1, upper = -1 �

userAuth-userMgmt = createAssociation � name = "UserAuth-UserMgmt" ,
isDerived = false, memberEnd = 
 userAuthEnd,userMgmtEnd ���

Once the new Association is created, we need to add it to the composed model. The composition di-
rective that accomplishes this is given below. We reference the composed model using the name comp:

SystemMgmtAuthRepository

checkSysAuth(mid:MgrID,op:String)

<<datatype>>
MgrID

UID
<<datatype>> UID

<<datatype>>

<<datatype>>
MgrID

primary: PrimaryModel

m: MgrID

Manager UserMgmt

UserRepository

1..*m: MgrID

Manager

addUser(mid:MgrID,u:UID)

accessAuthRep

doDeleteUser(u:UID)
doAddUser(u:UID)
deleteUser(mid:MgrID,u:UID)

uaccesses

aspect: AspectModel

1..*

accessUserRep

deleteUser(u:UID)
addUser(u:UID)

accesses
1

(5)

(5)

1..1

1..1
1..1

1..1

1..1

1..1

(1)+(2)
1..*

(3)+(4)

UserAuth

Fig. 10. Example 2. After application of directives.

20



(4) add comp::userAuth-userMgmt,
add comp::UserAuth::userAuthEnd,
add comp::UserMgmt::userMgmtEnd

There are two options for creating a composed model in which authorized calls to addUser and DeleteUser
are made: The first option is to replace the specifications of doAddUser and doDeleteUser so that they del-
egate the actions to the respective operations in UserMgmt using the new association. The second option is
to replace the calls to doAddUser and doDeleteUser by calls to the respective operations in UserMgmt. We
give the directives that accomplish the latter option below:

(5) replaceOccurrences aspect::UserAuth::doAddUser
with primary::UserMgmt::addUser(),

remove aspect::UserAuth::doAddUser,
replaceOccurrences aspect::UserAuth::doDeleteUser

with primary::UserMgmt::deleteUser(),
remove aspect::UserAuth::doDeleteUser

The effect of the directives on the aspect and primary models is shown in Figure 10. The association
between UserMgmt and UserAuth exists in the composed and not in the aspect or primary models - it is
shown here only to indicate that this association will exist in the composed model. The dependencies from
the addUser and deleteUser operations in UserAuth indicate that they call the respective operations in
UserMgmt.

4.3 Combining Element Directives

The examples and the descriptions of composition directives provide some indication that use of some ele-
ment directives are often coupled with the use of others. For example, removing a model element sometimes
requires use of directives such as the replaceOccurrences directive to avoid hanging references. An overview
of combined directives in the pre-merge, merge and post-merge categories are given below:

Pre-Merge Combined Directives: Matching directives are combined directives that force the matching of
elements or disallow the matching of elements. The directives are often combinations of changeproperty
and replaceOccurrences directives.

Merge Combined Directives: Combinations of the override and replaceOccurrences directives are often
used to override rules used to merge model elements.

Post-Merge Combined Directives: These directives are often combinations of directives for creating model
elements, adding model elements to a namespace and deleting model elements from a namespace.

The development of a library of combined directives that are based on actual use of directives on realistic
projects is a major goal of our research on composition directives.

4.4 Model Directives

Model directives determine how a set of models are composed. The model directives we have identified
constrain the order in which context-specific aspect models are composed with a primary model. These
directives can define a weave-ordering relationships between aspect models. A weave-ordering relationship
is a binary constraint that specifies an ordering between two aspect models. There are two cases: An aspect
model must be composed before another, or an aspect model must be composed after another.

21



Precedes

Directive Name: precedes

Application: This directive specifies that one aspect model is to be composed with a primary model before
another. This directive has two aspect models as operands. The first operand is the aspect model that is to be
composed the second operand.

Form: former precedes latter

Constraint: Both aspect models must exist.

Effect: A weave-ordering relationship is created between the two aspect models, and added to the set of
weave-ordering constraints maintained by the composer. This directive does not imply that former will be
woven immediately before latter. It simply requires that former be woven some time before latter.

Follows

Directive Name: follows

Application: This directive specifies that one aspect model is to be composed with a primary model after
another. This directive is provided only to increase the readability of composition directives. It may be in-
terpreted as equivalent to the precedes directive with the operands switched. This directive has two aspect
model operands. The first operand is the aspect model to be composed after the second operand.

Form: later follows earlier

Constraint: See precedes.

Effect: See precedes.

4.5 Weave Ordering Example

Consider the aspect design model in Figure 11(a). There are three different aspect models and the primary
model. In this example, the authentication aspect model needs to be composed before the authorization as-
pect model, because authorization without authentication is meaningless. Therefore, we declare the following
composition directive to make the order explicit.

(1) authentication precedes authorization

We could have also defined a composition directive using the follows directive with the operands reversed
to achieve the same result.

Suppose we also wish to weave the errorChecking aspect model last. The following composition di-
rectives accomplish this:

(2) errorChecking follows authorization
(3) errorChecking follows authentication

22



(b)

primary:PrimaryModel

Composition Directives

Mapping Rules

Design ModelDesign Model

primary:PrimaryModel

Composition Directives

Mapping Rules

authentication:Aspect

errorChecking:Aspect

authorization:Aspect

authentication:Aspect

authorization:Aspect

errorChecking:Aspect

<<follows>>

<<follows>>

<<precedes>>

(a)

Fig. 11. Example 4. Specifying Weave Order

The result is shown in Figure 11(b). The dependency from authentication to authorization illustrates
the weave-order relationship that specifies that authentication must be woven before authorization, and the
dependencies from errorChecking to each of the other aspects illustrates the two binary weave-order rela-
tionships that specify errorChecking as the last aspect to be woven.

5 Related Work

A number of researchers have developed aspect oriented software development (AOSD) approaches (e.g.,
see [13–20]). The composition procedures used in these AOSD approaches can be categorized as asymmet-
ric and symmetric [21]. In asymmetric composition, aspects and base models play clearly distinguished roles
during composition. These composition approaches tend not to support composition of aspects and composi-
tion of base models. AspectJ [22] is one of the popular aspect-oriented programming languages that uses an
asymmetric composition procedure. In symmetric composition both aspect and base models are treated the
same and thus aspect and base model composition are possible. The composition approaches used in work on
viewpoints [23], subject-oriented programming [24, 25], and multi-dimensional separation of concerns (MD-
SOC) [26] tend to be symmetric. The composition approach outlined in this paper uses a hybrid composition
procedure: The (generic) aspect models are patterns that cannot be directly composed with base models, but
the instantiated forms of the aspect models (i.e., context-specific aspect models) are not distinguished from
the primary model by the composition procedure. The model composition procedure we developed can be
used to compose (generic) aspect models (i.e., patterns) to obtain new aspect models (e.g., see [27]) and to
compose UML models. To date we have implemented the procedure for composing UML class models.

A survey of AOSD approaches can be found in Chitchyan et al. [28]. Very few approaches in the survey
provide support for composing design models. At the programming level, the subject-oriented approach is
closest to the approach described in this paper. In subject-oriented programming [24, 25], program elements
such as classes and methods are composed by merging corresponding elements. The correspondence is es-
tablished based on specified composition rules. The default correspondence is name-based, which can be
altered by writing additional composition rules. The composition rules used to control this process can be
classified under three categories: rules that establish correspondence, rules that control combination, rules

23



that control both correspondence and combination. The composition rules in subject-oriented programming
are analogous to our use of signatures to determine matches and the use of directives to alter model elements
and override default composition rules. Our composition procedure depends on the properties specified in
the signature rather than just names of model elements, primarily because not all UML model elements are
named elements. We have found that name-based matching has a greater potential of producing faulty mod-
els than signature-based composition, simply because signature-based composition allows for finer tuning of
matching criteria.

At the model level, a comparable AOM approach is the Theme approach proposed by Baniassad and
Clarke [13, 29, 30]. In the Theme approach, a design, called a theme, is created for each system requirement.
These themes, like context-specific aspect and primary models, are essentially design views. A comprehen-
sive design is obtained by composing themes. Composition in the Theme approach is based on the sym-
metric approach used in subject oriented programming. Composition relationships specify how models are
to be composed by identifying overlapping concepts and specifying how models are integrated. Two types
of integration strategies are used: Override and merge. Override integration is used when existing behavior
in a subject needs to be updated to reflect new requirements. Merge integration is used when subjects for
different requirements are to be integrated. Operations in related subjects may need to be merged into a uni-
fied operation. Reconciliation strategies resolve conflicts between property values of corresponding subject
elements. Precedence relationships, transformation functions applied to conflicting elements, explicit speci-
fication of reconciled elements, and default values may be used for reconciliation. Clarke [13] also extends
the UML metamodel with the notion of composableElements that can be composed using a composition
relationship. They have a Match metaclass that supports specification of matching criteria. Their matching
criteria includes matchByName and dontMatch. They leave the details of implementing the matchByName
and dontMatch to the user of the metamodel. In this sense the metamodel describes a framework for compos-
ing UML models. In our work we have developed a more specialized metamodel that contains specifications
of composition behaviors. The metamodel was designed to describe our composition procedure and to guide
the development of supporting tools. To validate the metamodel, we used it to develop a prototype tool for
composing UML class models. The composition directives that we have developed include some that are
similar to the merge and override integration strategies. The use of composition directives and signatures, as
described in this paper, allow modelers to define and apply their own integration and reconciliation strategies,
and thus gain finer control over how models are composed.

Brito and Moreira describe an aspect composition process that identifies match points in a design element
and defines composition rules [31]. Rules use identified match points, a binary contribution value (either
positive or negative) that quantifies the affects on other aspects, and a priority for a given aspect. In the
context of AOP [32], Kienzle et al. describe composition rules based on dependencies between aspects [33].
Both papers [31, 33] focus primarily on relationships that can exist between aspects. We describe the possible
relationships between aspects as weave-order relationships and override relationships, but it may also be
possible to use priorities and dependencies as done by Kienzle, Brito and Moreira in our approach. In this
sense, the ideas presented in their papers complement the ideas presented in this paper.

Aldawud et al. [34] propose a mechanism for composing state charts where a crosscutting behavior as
an event that triggers a state transition. The composition is specified by linking events across state diagrams.
We have not considered composition of state charts in our work.

6 Conclusions and Future Work

In this paper we present a signature-based composition approach that allows one to vary how models are
composed using composition directives. The signature-based approach improves upon name-based compo-

24



sition approaches by giving the modeler finer-grained control over the criteria used to match model elements.
Composition directives give added flexibility by providing the means to alter model elements and override
default composition rules to obtain desired composed models. The directives described in this paper are based
on our experience with using the composition approach to compose aspects modeling security features with
primary models. For example, we have applied the approach to modeling and composition of access control
features such as Role-Based Access Control and BLP schemes [5, 27, 35, 36], and for other security features
[6, 37–39]. We are currently applying the techniques in a larger case study involving the development of an
E-Commerce system.

A composition metamodel that describes the static and behavioral properties needed to support model
composition is also presented. The metamodel describes not only the static relationships among composition
concepts, but also provides specifications of behaviors that are needed to support model composition using
our approach. The composition metamodel describes the behavior needed to support model composition and
thus can be used to guide the development of model composition tools that support the composition approach
we developed. To validate the metamodel, we built a prototype tool on top of the KerMeta framework. The
tool currently supports the composition of UML class models and can be extended to support additional
features that appear in the composition metamodel. We are currently developing a subsystem for handling
composition directives that will be plugged into the tool.

Empirical evaluation is needed to validate the composition approach in real world design settings. Such
studies can determine the amount of effort required to specify the kinds of compositions that are required in
real world designs. The studies can also be used to determine whether the composition directives match the
requirements of a real project. The insights gained from the studies will be used to develop a tractable method
for selecting, defining, and applying composition directives and signatures. Work in this respect could result
in the specification of some common composition strategies [6] to ease the task of specifying and using
composition directives.

Acknowledgement

This material is based upon work partially funded by AFOSR under Award No. FA9550-04-1-0102.

References

1. France, R.B., Ray, I., Georg, G., Ghosh, S.: An aspect-oriented approach to design modeling. IEE Proceedings - Software,
Special Issue on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design 151 (2004) 173–185

2. The Object Management Group (OMG): Unified Modeling Language: Superstructure. Version 2.0, Final Adopted Specification,
OMG, http://www.omg.org (2003)

3. Straw, G., Georg, G., Song, E., Ghosh, S., France, R., Bieman, J.: Model composition directives. In: Proceedings of the
International Conference on the UML, October 2004, Springer (2004) 84–97

4. Reddy, R., France, R.B., Ghosh, S., Fleury, F., Baudry, B.: Model composition - a signature based approach. In: Proceedings
Aspect Oriented Modeling workshop held with MODELS/UML 2005, Montego Bay, Jamaica (2005)

5. Song, E., Reddy, R., France, R., Ray, I., Georg, G., Alexander, R.: Verifiable composition of access control and application
features. In: SACMAT ’05: Proceedings of the tenth ACM symposium on Access control models and technologies, New York,
NY, USA, ACM Press (2005) 120–129

6. Georg, G., Ray, I., France, R.: Using Aspects to Design a Secure System. In: Proceedings of the Interational Conference on
Engineering Complex Computing Systems (ICECCS 2002), Greenbelt, MD, ACM Press (2002) 117–126

7. TRISKELL: The KerMeta Project Home Page. URL http://www.kermeta.org (2005)
8. OMG Adopted Specification ptc/03-10-04: The Meta Object Facility (MOF) Core Specification. Version 2.0, OMG,

(http://www.omg.org)
9. Muller, P., Fleury, F., Jézéquel, J.: Weaving executability into object-oriented meta-languages. In: Proceedings of MOD-

ELS/UML 2005, Montego Bay, Jamaica (2005)

25



10. Reddy, Y.R., France, R.B., Georg, G.: An aspect-based approach to modeling and analyzing dependability features. Technical
Report CS04 - 109, Colorado State University (2004)

11. France, R., Georg, G.: Modeling fault tolerant concerns using aspects. Technical Report 02-102, Computer Science Department,
Colorado State University (2002)

12. Georg, G., France, R.B., Ray, I.: Composing aspect models. In: 4th AOSD Modeling with UML workshop, San Francisco, CA
(2003)

13. Clarke, S.: “Extending Standard UML with Model Composition Semantics”. Science of Computer Programming 44 (2002)
71–100

14. Araujo, J., Coutinho, P.: Identifying aspectual use cases using a viewpoint-oriented requirements method. In: Early Aspects
2003: Aspect Oriented Requirements Engineering and Architecture Design, Workshop of the 2nd Intl. Conference on Aspect-
Oriented Software Development, Boston, MA (2003)

15. Clarke, S., Walker, R.J.: Composition Patterns: An approach to Desigining Reusable Aspects. In: Proc. of 23rd Intl. Conference
on Software Engineering (ICSE), Toronto, Canada (2001) 5–14

16. Gray, J., Bapty, T., Neema, S., Tuck, J.: Handling crosscutting constraints in domain-specific modeling. Communications of
the ACM 44 (2001) 87–93

17. Grundy, J.C.: Multi-perspective specification, design and implementation of software components using aspects. International
Journal of Software Engineering and Knowledge Engineering 20 (2000)

18. Jacobson, I.: Case for Aspects - Part I. Software Development Magazine (2003) 32–37
19. Rashid, A., Sawyer, P., Moreira, A., Araujo, J.: Early aspects: A model for aspect-oriented requirements engineering. In: IEEE

Joint Intl. Conference on Requirements Engineering, Essen, Germany (2002) 199–202
20. Aksit, M., Wakita, K., Bosch, J., Bergmans, L., Yonezawa, A.: Abstracting Object Interactions Using Composition Filters. In

Guerraoui, R., Nierstrasz, O., Riveill, M., eds.: Proceedings of the ECOOP’93 Workshop on Object-Based Distributed Pro-
gramming. Volume 791., Springer-Verlag (1994) 152–184

21. Harrison, W., Ossher, H., Tarr, P.: Asymmetrically vs. symmetrically organized paradigms for software composition. Technical
report, IBM - RC22685 (W0212-147) (2002)

22. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingier, J., Irwin, J.: Aspect oriented programming. In:
Proc. of the European Conference on Object-Oriented Programming (ECOOP), Springer Verlag LNCS 1241, Finland (1997)
220–242

23. Nuseibeh, B., Kramer, J., Finkelstein, A.: A framework for expressing the relationships between multiple views in requirements
specification. IEEE Transactions on Software Engineering 20 (1994) 760–773

24. Harrison, W., Ossher, H.: Subject oriented programming (a critique of pure objects). In: Proc. of the 8th Annual Conference on
Object-Oriented Programming: Systems, Languages, and Applications (OOPSLA ’93), Washington, D.C. (1993) 411–428

25. Ossher, H., Kaplan, M., Katz, A., Harrison, W., Kruskal, V.: Specifying subject-oriented composition. Theory and Practice of
Object Systems, Wiley and Sons 2 (1996)

26. Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N degrees of separation: Multi-dimensional separation of concerns. In: Proceedings
of the 21st International Conference on Software Engineering (ICSE ’99). (1999) 107–119

27. Ray, I., Li, N., Kim, D.K., France, R.: Using parameterized UML to specify and compose access control models. In: Proceedings
of Sixth IFIP TC-11 WG 11.5 Working Conference on Integrity and Internal Control in Information Systems (IICIS 2003).
(2003)

28. Chitchyan, R., Rashid, A., Sawyer, P., Garcia, A., Alarcon, M., Bakker, J., Tekinerdogan, B., Clarke, S., Jackson, A.: Survey of
aspect-oriented analysis and design approaches. Technical Report ULANC-9, AOSD - Europe (2005)

29. Baniassad, E., Clarke, S.: Theme: An approach for aspect-oriented analysis and design. In: Proceedings of the International
Conference on Software Engineering. (2004) 158–167

30. Clarke, S., Walker, R.J.: Composition patterns: An approach to designing reusable aspects. In: The 23rd International Confer-
ence on Software Engineering (ICSE), Toronto, Canada. (2001)

31. Brito, I., Moreira, A.: Towards a composition process for aspect-oriented requirements. In: Proceedings of the Early-Aspects
Workshop at AOSD2002. (2002)

32. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin, J.: Aspect-oriented programming.
In: Proceedings of the European Conference on Object-Oriented Programming (ECOOP ’97). Volume 1241 of Lecture Notes
in Computer Science., Jyvaskyla, Finland (1997) 220–242

33. Kienzle, J., Yu, Y., Xiong, J.: On composition and reuse of aspects. In: Proceedings of the Foundations of Aspect-Oriented
Languages Workshop, Boston, MA, USA (March 2003)

34. Aldawud, O., Bader, A., Elrad, T.: Weaving with statecharts. In: Workshop on Aspect-Oriented Modeling (held with AOSD-
2002), Enschede, Netherlands (2002)

35. Ray, I., France, R., Li, N., Georg, G.: An aspect-based approach to modeling access control concerns. Information and Software
Technology 40 (2004) 557–633

26



36. Ray, I., Li, N., France, R., Kim, D.K.: Using UML to visualize role-based access control constraints. In: Proceedings of the
Symposium on Access Control Models and Technologies (SACMAT). (2004) 31–40

37. Georg, G., France, R., Ray, I.: Designing High Integrity Systems using Aspects. In: Proceedings of the Fifth IFIP TC-11 WG
11.5 Working Conference on Integrity and Internal Control in Information Systems (IICIS 2002), Bonn, Germany (2002)

38. Georg, G., France, R., Ray, I.: An Aspect-Based Approach to Modeling Security Concerns. In: Proceedings of the Workshop
on Critical Systems Development with UML, Dresden, Germany (2002)

39. Homb, S.H., Georg, G., France, R., Bieman, J., Jurjens, J.: Cost-benefit trade-off analysis using bbn for aspect-oriented risk-
driven development. In: Proceedings of the 10th IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS). (2005)

27



A Merge part of the signature-based composition procedure

********************************************************************************
// e1 and e2 are the model elements that need to be merged
e1.merge(e2 : ModelElement) //precondition : e1.sigEquals(e2) returns true
********************************************************************************
result := e1.getMetaClass.new // create the merged instance in the context of e1

// Iterate on all properties of the objects to be merged.
// e1 and e2 have the same meta-class. Thus, they have the
// same set of properties.

foreach Property p in e1.getMetaClass.getAllProperties

if type of p is primitive
// Primitive types are basic datatypes such as string, int.
// If an object does not have a value for a property then

// the value val is taken from the other object and vice versa.
// This is not a conflict.

// If neither object has values, then val is null in the resulting
// merged object.

if e1.get(p) is null or e2.get(p) is null then
result.set(p, val)

else
// If the values are the same then it is ok.
// Otherwise a conflict has been detected.
if e1.get(p) = e2.get(p) then

result.set(p, e1.get(p))
else

A conflict has been detected
else
// Type of p is not primitive.
// If the property refers to a single object, this is the base case.

if the property upper bound is 1
if e1.get(p) is null or e2.get(p) is null then

result.set(p, val) // val is the same as above
else

if sigEquals(e1.get(p), e2.get(p)) then
// If the object e1.get(p) is contained by e1 and same for e2
// (p.isComposite=true) then the objects should be merged,
// otherwise, one is chosen.
// Either one can be chosen because they both have the same signature

if p.isComposite is true then
result.set(p, merge(e1.get(p), e2.get(p)))

else
result.set(p, e1.get(p).clone())

28



else
A conflict has been detected

else
// The property refers to a collection of objects.
// The resulting merged object should contain property values that are

// either only in e1 or only in e2, or the merged version of objects
// that are in both e1 and e2.
for each value v1 in e1.get(p)

for each matching element v2 in e2.get(p)
if p.isComposite then

result.get(p).add(merge(v1, v2))
else

result.get(p).add(v1.clone())
if no element found

result.get(p).add(v1.clone())
for each value v2 in e2.get(p)

if NO matching element found in e1.get(p)
result.get(p).add(v2.clone())

********************************************************************************

29


