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Abstract. Recent psychological and neurological evidence suggests that

biological object recognition is a process of matching sensed images to

stored iconic memories. This paper presents a partial implementation of

(our interpretation of) Kosslyn's biological vision model, with a control

system added to it. We then show how reinforcement learning can be

used to control and optimize recognition in an unsupervised learning

mode, where the result of image matching is used as the reward signal

to optimize earlier stages of processing.

1 Introduction

Traditionally, object recognition has been thought of as a multi-stage process,
in which every stage produces successively more abstract representations of the
image. For example, Marr proposed a sequence of representations with images,
edges, 2 1

2
D sketch, and a 3D surfaces [7]. Recently, however, biological theories

of human perception have suggested that objects are stored as iconic memories
[6], implying that object recognition is a process of matching new images to
previously stored images. If so, object recognition is a process of transformation
and image matching rather than abstraction and model matching.

Even according to the iconic recognition theory, object recognition remains a
multi-stage process. In the iconic approach, it is not reasonable to assume that
the target object is alone in the �eld of view, or that the viewer has previously
observed the object from every possible perspective. As a result, there is still a
need for focus of attention (e.g. segmentation) and transformation/registration
steps prior to matching.

At the same time, there is another psychologically-inspired tradition in com-
putational models of biological vision that suggests that object recognition should
not be viewed as a single, hard-wired circuit. Instead, there are many techniques
for recognizing objects, and biological systems select among them based on con-
text and properties of the target object. Arbib �rst described this using a slide-
box metaphor in 1970's [1]. Since then, Ulllman's visual routines [17] and the
\purposive vision" approach [2] could be viewed as updated versions of the same
basic idea.

This paper tries to synthesize Kosslyn's iconic recognition theory with the
purposive approach. In particular, it builds on the author's previous work on



using reinforcement learning to acquire purposive, multi-stage object recogni-
tion strategies [4]. Unlike in previous work, however, this time we assume that
memory is iconic and that object recognition is therefore an image matching
task. We then use the match score between the stored image (memory) and the
sensed image (input) as a reward signal for optimizing the recognition process.

In this way, we build a prototype of an iconic recognition system that au-
tomatically develops specialized processes for recognizing common objects. In
this way, we not only combine two biologically motivated theories of biological
perception, we also avoid the need for hand-labeled training images that limit-
ing our earlier work. Instead, we have an unsupervised rather than supervised
system for learning object recognition strategies.

At the moment, our prototype system is extremely simple. This paper presents
a demonstration in which the image match score is used as a reward signal and
fed back to earlier stages of processing. The goal is to show that this reward
signal can be used to make object recognition more e�cient. More sophisticated
versions, with hopefully higher over-all recognition rates, are under development.

2 Previous Work

Kosslyn has argued since at least 1977 that visual memories are stored essentially
as images [5]. This idea received critical neurological support in 1982, when
researchers were able to show a retinotopic map of a previously viewed stimulus
stored in the striate cortex of a monkey [14]. Since then, the psychological and
neurological evidence for iconic memories has grown (see chapter 1 of [6] for an
opinionated overview). At the same time, SPECT and PET studies now show
that these iconic memories are active during recognition as well as memory
tasks [6]. The biological evidence for image matching as a component of biological
recognition systems is therefore very strong.

More speci�cally, Kosslyn posits a two-stage recognition process for human
perception, where the second stage performs image transformation and image
matching. Although he does not call the �rst stage \focus of attention", this is es-
sentially what he describes. He proposed pre-attentive mechanisms that extract
nonaccidental properties and further suggests that these nonaccidental proper-
ties serve as cues to trigger image matching. Beyond hardwired, pre-attentive fea-
tures, Kosslyn also suggests that biological systems learn object-speci�c features
called signals (see [6] pp.114-115) to predict the appearance of object instances
and that these cues are used as focus of attention mechanisms.

Kosslyn's description of image transformation and image matching is impre-
cise. Much of his discussion is concerned with image transformations, since the
image of an object may appear at any position, scale or rotation angle on the
retina. He argues that our stored memories of images can be adjusted \to cover
di�erent sizes, locations, and orientations" [6], although he never gives a math-
ematical description of the class of allowable transforms. Tootell's image [14]
suggests, however, that at least 2D perspective transformations should be al-
lowed, if not non-linear warping functions. With regard to the matching process



itself, Kosslyn doubts that a template-like image is fully generated and then
compared to the input. Without further explanation, one is left with a vague
commitment to an image matching process that is somehow more 
exible than
simple correlation.

It should be noted that Kosslyn's model is not the only model of biological
object recognition. For example, Rao and Ballard propose a biological model in
which images are transformed into vectors of �lter responses, and then matched
to vectors representing speci�c object classes [9]. Biederman presents a model
based on pre-attentive �gure completion [3]. Nonetheless, neither of these theo-
ries explain the strikingly iconic nature of Tootell's striate cortex image [14].

In addition, there has been a great deal of interest recently in PCA-based
appearance matching [8, 16]. While powerful, appearance matching should be
understood as one possible technique for the image matching stage of object
recognition. In fact, appearance matching is a computationally e�cient technique
for approximating the e�ect of correlating one test image to a large set of stored
model images (see [15] Chapter 10 for a succinct mathematical review). Thus
appearance matching is a potentially useful component of an object recognition
system, but it is not by itself a model of biological object recognition.

Previously, we developed a system that learns control strategies for object
recognition from training samples. The system, called ADORE, formalized the
object recognition control problem as a Markov decision problem, and used re-
inforcement learning to develop nearly optimal control policies for recognizing
houses in aerial images [4]. Unfortunately, the use of this system in practice has
been hindered by the need to provide large numbers of hand-labeled training
images.

Kosslyn's theory suggests that hand-labeled training images may not be nec-
essary. By using the result of image matching as the training signal, we can move
ADORE into an unsupervised learning mode. This removes the need to hand-
label training instances, thereby creating an unsupervised system that learns
and re�nes its recognition policies as it experiences the world.

3 The Proposed System

Fig. 1 shows our computational model of biological vision. It can be interpreted
as adding a control and learning component to our instantiation of Kosslyn's
model [6]. At an abstract level, it has three recognition modules: focus of atten-
tion, transformation/registration, and matching1. At a more detailed level, each
module has multiple implementations and parameters that allow it to be tuned
to particular object classes or contexts. For example, the �nal image matching
stage can be implemented many ways. If the goal is to match an image of a
speci�c object instance against a single template image in memory, then image
correlation remains the simplest and most reliable comparison method. Alterna-
tively, if the goal is to match an image against a set of closely related templates

1 The focus of attention module has both a pre-attentive and attentive component,

although we will not concentrate on this distinction in this paper.



in memory (e.g. instances of the same object under di�erent lighting conditions),
then principle components analysis (PCA) may be more e�cient. In more ex-
treme cases, if the goal is to �nd an object that may appear in many di�erent
colors (e.g. automobiles), then a mutual information measure may be more ef-
fective [18], while a chi-squared histogram comparison may be most appropriate
for certain highly textured objects such as trees [12].
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Fig. 1. The proposed system architecture.

In other words, the top-level modules in Fig. 1 represent roles in the recog-
nition process that must be executed in sequence. Each role, however, can be
�lled by a variety of techniques, depending on the scene and object type. In
this way, we address Kosslyn's need for a 
exible image matching system, and
at the same time incorporate all of Kosslyn's suggestion for focus of attention
mechanisms [6].

However, the presence of options within the modules creates a control prob-
lem: which technique(s) should be applied to any given input? This is a dynamic
control decision, since the choice of technique may be a function of properties of
the input image. More importantly, it involves delayed rewards, since the conse-
quences of using a particular FOA or transformation technique are not known
until after image matching. We therefore use a reinforcement learning module to
generate control policies for optimizing recognition strategies based on feedback
from the image matching module (see Fig. 1).

4 The Implemented System

The dashed lines in Fig. 1 outline the parts of the system that have been im-
plemented so far. It includes two technique for FOA module and one technique
for each of the others: color histogram matching and image patch correlation for
focus of attention; matching four image points to four image points for perspec-
tive image transformation and registration; and correlation for image matching.
While this is clearly a very limited subset of the full model in terms of its object
recognition ability, our goal at this point is to test the utility of the image match
score as a reinforcement signal, not to recognize objects robustly.



Currently, the system is \primed" to look for a speci�c object by a user
who provides a sample image of the target. This sample image is then used as
the template for image matching. The user also provides the locations of four
distinctive intensity surface patches within the template image, for use by our
(primitive) focus of attention mechanism. The FOA mechanism then extracts
templates at nine di�erent scales from each location, producing nine sets of four
surface patches2.

When an image is presented to the system at run-time, a local color histogram
matching algorithm is applied for pre-attentive FOA. If the control module de-
cides that the resulting hypothesis is good enough to proceed further, the FOA
system uses a rotation-free correlation algorithm to match the surface patches
to the new image. (As described in [10], the rotation-free correlation algorithm
allows us to �nd an object at any orientation without doing multiple correla-
tions.) The result is nine sets of four points each, one set for each scale. Thus the
focus of attention mechanism produces nine point set hypotheses for the image
transformation step to consider.

Under the control of the reinforcement learning module, the image trans-
formation module selects one of these nine hypotheses to pursue. It then uses
the four point correspondences between the input image and model template to
compute the perspective transformation that registers the input image to the
template. In principle, this compensates not only for changes in translation, ro-
tation and scale, but also for small perspective distortions if the target object is
approximately planar.

After computing the image transformation, the system has a third control
decision to make. If the transformation is sensible, it will apply the transforma-
tion to the input image and proceed to image matching. On the other hand, if
the selected set of point matches was in error the resulting image transformation
may not make sense. In this case, the control system has the option to reject the
current transformation hypothesis, rather than to proceed onto image matching.

The �nal image matching step is trivial. Since the transformed input image
and the object template are aligned, simple image correlation generates the
reward signal. In general, if we have found and transformed the object correctly,
we expect a greater than 0:5 correlation.

4.1 Optimization through Unsupervised Learning

The proposed system casts object recognition as a unsupervised learning task.
Users prime the system by providing a sample image of the target object and
the location of unique appearance patches. The system then processes images,
rewarding itself for high correlation scores and penalizing itself for low scores.
In this way, the system optimizes performance for any given template.

To learn control strategies, the system models object recognition as a rein-
forcement learning problem. As shown in Fig. 2, the state space of the system
has four major \states": two for pre-attentive/attentive FOA hypotheses, one

2 Each set of four points includes patches at a single scale.



for image transformation hypotheses, and one for image matching hypotheses.
The algorithms in Fig. 1 are the actions that move the system from one state
to another and/or generate rewards, and the system learns control policies that
select which action to apply in each state for the given task.
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Correlate

Transformation Hypotheses

(Perspective Matrices)

Image Matching Hypotheses

(Registered Images)

(scale 1)
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Fig. 2. The iconic view of state spaces and actions. At each state space, the control

system decides whether to proceed further or reject current hypothesis.

Two necessary re�nements complicate this simple system description. The
�rst is that the four states are actually state spaces. For each type of hypothesis,
the system has a set of features that measure properties of that type of hy-
pothesis. For example, for the FOA point set hypotheses the system de�nes nine
features: the correlation scores for each point (4 features); the di�erence between
the best and second best correlation scores for each point (to test for uniqueness;
4 more features); and a binary geometric feature based on the positions of the
points that tests for re
ections3.

The control policy therefore maps points in these four feature spaces onto
actions. In particular, every action takes one type of hypothesis as input, and
the control policy learns a Q function for every action that maps points in the
feature space of the input data onto expected future rewards. At run-time, these
Q functions are evaluated on the features associated with hypotheses, and the
action with the highest expected reward is selected and run.

The second re�nement is that some actions may return multiple hypotheses.
For example, our current attentive FOA algorithm returns nine di�erent point
sets corresponding to nine di�erent scales. When this happens, the control system
must select the best state/action pair to execute next, where each hypothesis is
one state. Again, this is done by selecting the maximum expected reward.

With these re�nements, we have a reinforcement learning system de�ned
over continuous state spaces. This implies that we need function approximation
techniques to learn the Q functions. Currently we are using backpropagation
neural networks for this, although there is some evidence that memory-based
function approximation techniques may provide faster convergence [11] and we
will experiment with other techniques in the future. Given a function approxi-

3 An image re
ection would imply looking at the back of the surface, which we assume

to be impossible.



Fig. 3. A cgw tree magazine (left), a cgw watch magazine (middle), and a wired maga-

zine image (right).

mation technique, the system can be trained as usual using either TD(�) [13] or
Q-Learning [19].

5 Experimental Results

As mentioned earlier, we do not claim at this point to have a robust object
recognition system, since much of Fig. 1 remains unimplemented. Instead, the
goal of the experiments is to test whether the image match score can be used
as a reinforcement signal to make object recognition more e�cient. To this end,
we consider a \control-free" baseline system that exhaustively applies every rou-
tines in Fig. 1, and then selects the maximum correlation score. We then compare
this to the strategy learned by reinforcement learning. While the reinforcement
learning system obviously cannot create a higher correlation score than exhaus-
tive search, the ideal is that the controlled system would produce nearly as high
correlation scores while executing far fewer procedures.

The experiment was performed with a set of color images of magazines against
a cluttered background. The dataset has 50 original images with di�erent viewing
angles and variations in illumination and scale. There are three types of magazine
images in the dataset: 30 cgw tree images, 10 cgw watch images, and 10 images
containing the wired magazine. Fig. 3 shows these three types of magazines. Each
original image was scaled to 14 di�erent resolutions at scales ranging from 0.6
to 1.5 times the original. As a result, the dataset contains 700 images. We de�ne
a good sample to be any image that produces a maximum correlation score of
0:5 or higher under exhaustive search.

The �rst row of Table 1 shows the number of good and bad samples in
each dataset. Table 1 also contains several measures of the performance of our
control system. The number of rejected samples indicates the number of false
negatives for good samples and the number of true negatives for bad samples.
Therefore, it is better to have small values for the former and large values for
the latter. According to the values in the table, the control system works well on
rejecting bad samples for all three cases. The true negative samples classi�ed by
the system include all the images without target object and all the false positive
samples have �nal matching scores less that 0:5, which means that, eventually,



Table 1. Results obtained by the policy learned without backtracking.

CGW_TREE

good bad goodbadgood bad

53(41.1%)

2.92

129 571 31 669 59 641

1.542.851.97

0.936343

22(37.3%)

0.956907

WIREDCGW_WATCH

# of samples

operation_count/sample

#of optimal prediction

average prediction/optimal

# of rejected samples

2.94

11(35.5%)25(19.4%) 550(96.3%) 668(99.9%) 640(99.8%)

1.33

15(48.4%)

0.954375

20(33.9%)

the system will not consider those samples as positive samples. Therefore, we
can say that the control system generates no false positives.

When it comes to the false negatives, however, the control system had a
somewhat harder time. One of the reasons is inaccurate predictions by the neural
network trained on pre-attentive FOA hypothesis. Once the mistake is made,
there is no way to recover from it. Also, even one weak image patch out of four
can easily confuse the selection of point matches and the resulting transformed
image gets low match score. This is happened most of the times in cgw watch

and wired cases. These concerns lead us to the need for de�ning more distinctive
feature set.

As a point of reference for e�ciency of object recognition, there are few
enough control options in the current system to exhaustively pursue all options
on all hypotheses for any given image, and then select the maximum match
score. This approach executes 28 procedures per image, as opposed to less than
three procedures per image on average for cgw tree and even less that two on
average for cgw watch and wired under the control of the reinforcement learning
system. On the other hand, the average reward (i.e. match score) generated
by the reinforcement learning system is 94% of the optimal reward generated
by exhaustive search for cgw tree, 95% of optimal for cgw watch, and 96% of
optimal for wired. Thus there is a trade-o�: slightly lower rewards in return for
more than 93% savings in cost.

We also noticed that the neural networks trained to select point matches are
less accurate than the networks trained to decide whether to reject or match
transformation hypothesis. This creates an opportunity to introduce another
re�nement to the reinforcement learning system: since we are controlling a com-
putational (rather than physical) process, it is possible to backtrack and \undo"
previous decisions. In particular, if the system chooses the wrong point set,
it may notice its mistake as soon as it measures the features of the resulting
transformation hypothesis. The system can then abandon the transformation
hypothesis and backtrack to select another point set.

Table 2 shows the results with backtracking. The additional operation per
sample is less than one on average, and it greatly reduced the false negative rates
with no signi�cant increase in the false positive rates. With backtracking, the
false negative rate drops from 19:4% to 7:0% on cgw tree, from 35:5% to 19:4%
on cgw watch, and from 33:9% to 10:2% on wired case, while the largest increase



in the false positive rates is only 0:9%. It is open to interpretation, however,
whether backtracking could be part of a model of biological vision.

Table 2. Results obtained by the policy learned with backtracking.

CGW_TREE

good bad goodbadgood bad

129 571 31 669 59 641

WIREDCGW_WATCH

3.72 2.15

0.963196

6(10.2%) 640(99.8%)545(95.4%)

69(53.5%)

3.53 1.55

33(58.9%)

0.975222

# of samples

operation_count/sample

#of optimal prediction

average prediction/optimal

# of rejected samples

3.35

17(54.8%)

0.939729

668(99.9%)

2.11

9(7.0%) 6(19.4%)

6 Conclusions and Future Work

We have described a system that learns control strategies for object recogni-
tion tasks through unsupervised learning. The basic recognition process of the
system is biologically motivated, and uses reinforcement learning to re�ne the
system's overall performance. We tested the system for three di�erent target
objects on a set of color images with di�erences in viewing angle, object location
and scale, background, and the amount of perspective distortion. The learned
control strategies were within 94% of optimal for the worst case and 98% of
optimal for the best case.

In the future, we would like to complete our implementation of the broader
system outlined in Fig. 1. For example, histogram correlation and mutual in-
formation can also be used to match images, thereby allowing the system to
recognize a broader range of objects. Even more improvements can be made in
the focus of attention module. As the set of procedures grows, there will be more
actions that can be applied to every type of intermediate data. How accurately
can we predict the expected rewards of these actions is, therefore, one of the
most important issues in the system implementation. To increase the predic-
tion power, we need to de�ne more distinctive features than those used at the
moment.
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