Minimization of Boolean Functions using Karnaugh Maps Maurice Karnaugh 1953

Minimization

- Minimization can be done using
 - Boolean algebra
 - To combine terms
- Or equivalently
 - Karnaugh maps
 - Visual identification of terms that can be combined

$$B \overline{C} + B C = B(\overline{C} + C) = B$$

- K-Maps are a convenient way to simplify Boolean Expressions.
- They can be used for up to 4 (or 5) variables.
- They are a visual representation of a truth table.
- Expression are most commonly expressed in sum of products form.

Truth table to K-Map

The expression is:

minterms are represented by a 1 in the corresponding location in the K map.

 $\overline{A}.\overline{B} + \overline{A}.B + A.B$

K-Maps

- Adjacent 1's can be "paired off"
- Any variable which is both a 1 and a zero in this pairing can be eliminated
- Pairs may be adjacent horizontally or vertically

An example

• Two Variable K-Map

Grouping the Pairs

Our truth table simplifies to A.C + B.C

Here, we can "wrap around" and this pair equates to A.C as B is eliminated.

Groups of 4

Groups of 4 in a block can be used to eliminate two variables:

The solution is B because it is a 1 over the whole block (vertical pairs) = BC + \overline{BC} = B(C + \overline{C}) = B.

• Three Variable K-Map

ABC	00	01	11	10
0	$\overline{A}.\overline{B}.\overline{C}$	$\overline{A}.\overline{B}.C$	$\overline{A}.B.C$	$\overline{A}.B.\overline{C}$
1	$A.\overline{B}.\overline{C}$	$A.\overline{B}.C$	A.B.C	$A.B.\overline{C}$

• Extreme ends of same row are *adjacent*

• Three Variable K-Map example

 $X = \overline{A}.\overline{B}.\overline{C} + A.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.B.\overline{C}$

ABC	00	01	11	10
0				
1				

X =

The Block of 4, again

ABC	00	01	11	10
0	1			1
1	1			1

$$X = \overline{C}$$

4-variable Karnaugh Maps

• Four Variable K-Map

AB CD	00	01	11	10
00	$\overline{A}.\overline{B}.\overline{C}.\overline{D}$	Ā.Ē.C.D	Ā.B.C.D	Ā.Ē.C.D
01	Ā.B.Ē.D	Ā.B.Ē.D	Ā.B.C.D	Ā.B.C.D
11	A.B.C.D	A.B.C.D	A.B.C.D	A.B.C.D
10	A.B.C.D	A.B.C.D	A.B.C.D	A.B.C.D

Four corners adjacent

• Four Variable K-Map example

 $F = \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.B.\overline{C}.D + \overline{A}.B.\overline{C}.\overline{D} + A.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.C.\overline{D} + \overline{A}.\overline{B}.C.\overline{D} + \overline{A}.\overline{B}.\overline{C}.D$

ABCD	00	01	11	10
00				
01				
11				
10				

• Four Variable K-Map solution $F = \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.B.\overline{C}.D + \overline{A}.B.\overline{C}.\overline{D} + A.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.\overline{D}$

 $F = \overline{B}.\overline{D} + \overline{A}.\overline{C}$