Minimization of Boolean Functions using Karnaugh Maps Maurice Karnaugh 1953

Minimization

- Minimization can be done using
- Boolean algebra
- To combine terms

$$
B \bar{C}+B C=B(\bar{C}+C)=B
$$

- Or equivalently
- Karnaugh maps
- Visual identification of terms that can be combined

Karnaugh Maps

- K-Maps are a convenient way to simplify Boolean Expressions.
- They can be used for up to 4 (or 5) variables.
- They are a visual representation of a truth table.
- Expression are most commonly expressed in sum of products form.

Truth table to K-Map

The expression is:

$$
\bar{A}_{.} \cdot \bar{B}+\bar{A} \cdot B_{B}+A_{.} B
$$

minterms are represented by a 1 in the corresponding location in the K map.

K-Maps

- Adjacent 1's can be "paired off"
- Any variable which is both a 1 and a zero in this pairing can be eliminated
- Pairs may be adjacent horizontally or vertically
B is eliminated, leaving \bar{A} as the term

The expression becomes A + B

An example

- Two Variable K-Map

A	B	C	P
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Grouping the Pairs

Groups of 4

Groups of 4 in a block can be used to eliminate two variables:

The solution is B because it is a 1 over the whole block (vertical pairs) $=B C+B \bar{C}=B(C+\bar{C})=B$.

Karnaugh Maps

- Three Variable K-Map

\mathbf{A} BC	$\mathbf{0 0}$	$\mathbf{0 1}$	11	$\mathbf{1 0}$
$\mathbf{0}$	$\bar{A} \cdot \bar{B} \cdot \bar{C}$	$\bar{A} \cdot \bar{B} \cdot C$	$\bar{A} \cdot B \cdot C$	$\bar{A} \cdot B \cdot \bar{C}$
$\mathbf{1}$	$A \cdot \bar{B} \cdot \bar{C}$	$A \cdot \bar{B} \cdot C$	$A \cdot B \cdot C$	$A \cdot B \cdot \bar{C}$

\leqslant	
10	
$\bar{A} . B . \bar{C}$	$\bar{A} \cdot \bar{B} \cdot \bar{C}$
A.B. \bar{C}	A. \bar{B}

- Extreme ends of same row are adjacent

Karnaugh Maps

- Three Variable K-Map example

X $=\bar{A} \cdot \bar{B} \cdot \bar{C}+A \cdot \bar{B} \cdot \bar{C}+\bar{A} \cdot B \cdot \bar{C}+A \cdot B \cdot \bar{C}$
A BC
$\mathbf{0}$
$\mathbf{0}$
$\mathbf{1}$

The Block of 4, again

A BC	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$	1			1
$\mathbf{1}$	1			1
$X=\overline{\mathrm{C}}$				

4-variable Karnaugh Maps

- Four Variable K-Map

$A B^{C D}$	00	01	11	10
00	$\overline{\text { A. }}$ B. $\bar{C} . \bar{D}$	$\overline{\text { A }}$. $\bar{B} . \bar{C} . \mathrm{D}$	$\overline{\text { A. }}$ B.C.D	$\overline{\text { A. }}$ B.C. $\overline{\mathrm{D}}$
01	$\overline{\text { A. }}$ B. $\bar{C} . \bar{D}$	$\overline{\text { A.B.C.C.D }}$	A.B.C.D	$\overline{\text { A.B.C. }} \overline{\text { D }}$
11	A.B. $\bar{C} . \bar{D}$	A.B. $\bar{C} . D$	A.B.C.D	A.B.C. \bar{D}
10	A. $\bar{B} . \bar{C} . \bar{D}$	A.B. $\bar{C} . \mathrm{D}$	A.B.C.C.D	A.B.C. \bar{D}

- Four corners adjacent

Karnaugh Maps

- Four Variable K-Map example
$F=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot B \cdot \bar{C} \cdot D+\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}+A \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot \bar{B} \cdot C \cdot \bar{D}+A \cdot \bar{B} \cdot C \cdot \bar{D}+\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D$

$A B C D$	00	01	11	10
00				
01				
11				
10				

$F=$

Karnaugh Maps

- Four Variable K-Map solution
$F=\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot B \cdot \bar{C} \cdot D+\bar{A} \cdot B \cdot \bar{C} \cdot \bar{D}+A \cdot \bar{B} \cdot \bar{C} \cdot \bar{D}+\bar{A} \cdot \bar{B} \cdot C \cdot \bar{D}+A \cdot \bar{B} \cdot C \cdot \bar{D}+\bar{A} \cdot \bar{B} \cdot \bar{C} \cdot D$

$A B^{C D}$	00	01	11	10
00	1	1		1
01	1	1		
11				
10	1			1

$$
\mathrm{F}=\overline{\mathrm{B}} \cdot \overline{\mathrm{D}}+\overline{\mathrm{A}} \cdot \overline{\mathrm{C}}
$$

