Chapter 19
Data Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, M. Strout, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Data Structures

@ A data structure is a particular organization
of data in memory.

« We want to group related items together.

=« We want to organize these data bundles in a way that
IS convenient to program and efficient to execute.

@ An array is one kind of data structure.
In this chapter, we look at two more:
= struct — directly supported by C

= linked list — built from struct and dynamic
allocation

CS270 - Spring 2013 - Colorado State University 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What we will study

@ struct: define, declare to allocate, access
= Array of structs, pointer to struct
@ typedef
@ dynamic allocation: allocation and deallocation
@ Example: linked list: Car lot example

[Java: array vs. ArrayList

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Structures in C

@ A struct IS a mechanism for grouping together
related data items of different types.

=« Recall that an array groups items of a single type.

« Example: We want to represent an airborne aircraft:

char flightID[7];
int altitude;

int longitude;
int latitude;

int heading;
double airSpeed;

= We can use a struct to group data fields for each
plane in a single named entity.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Defining a Struct

@ We first need to define a new type for the compiler
and tell it what our struct looks like.

struct flightType {

char £flightID[7]; /* max 6 characters */

int altitude; /*
int longitude; /*
int latitude; /*
int heading; /*

double airSpeed; /*
}:

in
in
in
in
in

meters */

tenths of degrees */
tenths of degrees */
tenths of degrees */
km/hr */

= This tells the compiler how big our struct is and
how the different data items ("members”) are laid out in memory.

= But it does not allocate any memory.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Declaring and Using a Struct

@ To allocate memory for a struct,
we declare a variable using our new data type.

struct flightType plane; plane.flightID[O]

@ Memory is allocated,and we
can access individual members
of this variable:

plane.airSpeed

800.0; plane.flight|D[6]

10000; — plane.altitude
’ plane.longitude

, : lane.latitude
@ A struct’'s members are laid N\ Elane.heading

out in the order specified by N plane.airspeed
the definition.

plane.altitude

CS270 - Spring 2013 - Colorado State University 6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Defining and Declaring at Once
@ You can both define and declare a struct at the same time.

struct flightType

char £flightID[7]; /* max 6 characters */

{
int altitude; /*
int longitude; /*
int latitude; /*
int heading; /*

double airSpeed; /*
} maverick;

in
in
in
in
in

meters */

tenths of degrees */
tenths of degrees */
tenths of degrees */
km/hr */

@ And you can use flightType to declare other structs.
struct flightType iceMan;

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

typedef

@ C provides a way to define a data type by giving a new
name to a predefined type.

Syntax:

typedef <type> <new_ name>;
Examples:

typedef int Color;

typedef struct flightType Flight;

typedef struct ab_ type {
int a;
double b;
} ABGroup;

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using typedef

@ This gives us a way to make code more readable
by giving application-specific names to types. Use

Color pixels([500];
Flight planel, plane2;

Typical practice

Put typedef's into a header file, and use type names in main
program. If the definition of Color/Flight changes, you might not
need to change the code in your main program file.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Generating Code for Structs

@ Suppose our program starts out like this:

int x; y
Flight plane; plane.flightID[O]
int y;

plane.altitude = 0;

plane.flightiD[6]

= LC-3 code for this assignment: plane.altitude
plane.longitude

plane.latitude
A plane.heading

ADD RO, RS, #-13 ; RO=plane plane.airspeed

STR R1l, RO, #7 ; 8th word
RS — X double

CS270 - Spring 2013 - Colorado State University 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Array of Structs

@ Can declare an array of structs:

Flight planes[100];

= Each array element is a struct (7 words, Iin this case).

= To access member of a particular element:

planes[34] .altitude = 10000;

@ Because [] and . operators have the same precedence,
and both associate left-to-right, this is the same as:

(planes[34]) .altitude = 10000;

CS270 - Spring 2013 - Colorado State University

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pointer to Struct

@ We can declare and create a pointer to a struct:
Flight *planePtr;
planePtr = &planes[34];
= To access a member of the struct addressed by
pointer:

(*planePtr) .altitude = 10000;

= Because the . operator has higher precedence than *,
this is NOT the same as:

*planePtr.altitude = 10000;

@ C provides special syntax for accessing a struct member
through a pointer:

planePtr->altitude = 10000;

CS270 - Spring 2013 - Colorado State University 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Passing Structs as Arguments

@ Unlike an array, a struct is always passed by value
Into a function.

= This means the struct members are copied to
the function’s activation record, and changes inside the
function are not reflected in the calling routine’s copy.

@ Most of the time, you'll want to pass a pointer to a struct.
int Collide(Flight *planeA, Flight *planeB)

{
if (planeA->altitude == planeB->altitude) {

}

else
return 0;

CS270 - Spring 2013 - Colorado State University 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dynamic Allocation

@ Suppose we want our weather program to handle

a variable number of planes — as many as the user
wants to enter.

=« We can't allocate an array, because we don’t know
the maximum number of planes that might be
required.

= Even if we do know the maximum number, it might be
wasteful to allocate that much memory because most
of the time only a few planes’ worth of data is needed.

Solution:
Allocate storage for data dynamically, as needed.

CS270 - Spring 2013 - Colorado State University 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

malloc

@ The Standard C Library provides a function for
allocating memory at run-time: malloc.

void *malloc(int numBytes) ;

@ It returns a generic pointer (wvoid¥*) to a contiguous
region of memory of the requested size (in bytes).

@ The bytes are allocated from a region in memory
called the heap.

= The run-time system keeps track of chunks of

memory from the heap that have been allocated.

CS270 - Spring 2013 - Colorado State University

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using malloc

@ To use malloc, we need to know how many bytes
to allocate. The sizeof operator asks the compiler to

calculate the size of a particular type.

planes = malloc(n * sizeof (Flight));

@ We also need to change the type of the return value
to the proper kind of pointer — this is called “casting.”

planes =
(Flight*) malloc(n* sizeof (Flight))

CS270 - Spring 2013 - Colorado State University

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example

int airbornePlanes;
Flight *planes;

printf (“How many planes are in the air?”);
scanf (“%d”, &airbornePlanes);

planes =
(Flight*) malloc(sizeof (Flight) *airbornePlanes) ;

if (planes == NULL) {

printf (“Error in~gllocating the data array.\n”);
) . If allocation fails,

planes[0] .altitude = malloc returns NULL.

\ Note: Can use array notation
or pointer notation.

CS270 - Spring 2013 - Colorado State University 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

free

@ Once the data is no longer needed,
It should be released back into the heap for later use.

« This is done using the free function, passing it the
same address that was returned by malloc.

void free (void¥*) ;

« If allocated data is not freed, the program might run
out of heap memory and be unable to continue.

CS270 - Spring 2013 - Colorado State University

18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Linked List Data Structure

@ A linked list is an ordered collection of nodes,
each of which contains some data,
connected using pointers.

=« Each node points to the next node in the list.
= The first node in the list is called the head.
= The last node in the list is called the tail.

(Node O)—)(Node 1)—)(Node 2

NULL

CS270 - Spring 2013 - Colorado State University 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Linked List vs. Array

@ A linked list can only be accessed sequentially.

@ To find the 5™ element, for instance,
you must start from the head and follow the links
through four other nodes.

@ Advantages of linked list:
« Dynamic size
« Easy to add additional nodes as needed

= Easy to add or remove nodes from the middle of the
list (Just add or redirect links)

@ Advantage of array:
= Can easily and quickly access arbitrary elements

CS270 - Spring 2013 - Colorado State University 20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Car Lot

@ Create an inventory database for a used car lot.
Support the following actions:

= Search the database for a particular vehicle.
= Add a new car to the database.
= Delete a car from the database.

@ The database must remain sorted by vehicle ID.

@ Since we don’t know how many cars might be on the lot
at one time, we choose a linked list representation.

CS270 - Spring 2013 - Colorado State University 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Car data structure

@ Each car has the following characterics:
vehicle ID, make, model, year, mileage, cost.

@ Because it's a linked list, we also need a pointer to
the next node in the list:
typedef struct carType Car;

struct carType {
int vehiclelD;
char make[20];
char model[20];
int year;
int mileage;
double cost;
Car *next; /* ptr to next car in list */

CS270 - Spring 2013 - Colorado State University

22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#include <stdio.h>

int main()

{

int op = 0; /* Current operation to be perform. */
Car carBase; /* carBase an empty head node */

carBase.next = NULL; /* Initialize the list to empty */

printf(" ==\n");
printf("=== Used car database ===\n");
printf(" ==\n\n");
while (op !=4) {

printf("Enter an operation:\n");

printf("1 - Car aquired. Add a new entry for it.\n");
printf("2 - Car sold. Remove its entry.\n");
printf("3 - Query. Look up a car's information.\n");
printf("4 - Quit.\n");

scanf("%d", &op);

if (op==1)
AddEntry(&carBase);
else if (op == 2)
DeleteEntry(&carBase); They all need
else if (op == 3) Car *ScanList(Car *head, int searchID)
Search(&carBase);
else if (op == 4)
printf("Good bye.\n\n");
else
printf("Invalid option. Try again.\n\n");

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

*planePtr.altitude = 10000;

Scan nlng the L|St planePtr->altitude = 10000;

@ Searching, adding, and deleting all require us to
find a particular node in the list. We scan the list until
we find a node whose ID is >= the one we're looking for.

Car *ScanlList(Car *head, int searchlID)
{
Car *previous, *current;
previous = head;
current = head->next;
/* Traverse until ID >= searchID */
while ((current!=NULL)
&& (current->vehiclelID < searchlID)) {
previous = current;
current = current->next;

}

return previous;

CS270 - Spring 2013 - Colorado State University 24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Adding a Node

@ Create a new node with the proper info.
Find the node (if any) with a greater vehiclelD.
“Splice” the new node into the list:

,>G]ew node)'x,

Node 0 Node 1 \ Node 2
((Node 0 }——>{ Node 1 }—%—(

NULL

CS270 - Spring 2013 - Colorado State University 25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

void AddEntry(Car *headPointer)

{
Car *newNode; [* Points to the new car info */
Car *nextNode; /* Points to car to follow new one */
Car *prevNode; /* Points to car before this one */

/* Dynamically allocate memory for this new entry. */
newNode = (Car *) malloc(sizeof(Car));

if (newNode == NULL) {
printf("Error: could not allocate a new node\n");
exit(1);

}

printf("Enter the following info about the car.\n");
printf(" Separate each field by whitespace:\n");
printf("vehicle_id make model year mileage cost\n");

scanf("%d %s %s %d %d %lf",
&newNode->vehiclelD, newNode->make, newNode->model,
&newNode->year, &newNode->mileage, &newNode->cost);

prevNode = ScanList(headPointer, newNode->vehiclelD);
nextNode = prevNode->next;

if ((nextNode == NULL) ||
(nextNode->vehiclelD != newNode->vehiclelD)) {
prevNode->next = newNode;
newNode->next = nextNode;
printf("Entry added.\n\n");

else {
printf("That car already exists in the Database!\n");
printf("Entry not added.\n\n");
free(newNode);

}
}

CS270 - Spring 2013 - Colorado State University

26

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Excerpts from Code to Add a Node

newNode = (Car*) malloc(sizeof (Car));
/* initialize node with new car info */

prevNode = Scanlist (head, newNode->vehiclelD) ;
nextNode = prevNode->next;

if ((nextNode == NULL)
|| (nextNode->vehiclelID !'= newNode->vehiclelD))
prevNode->next = newNode;
newNode->next = nextNode;

}

else {

printf (“Car already exists in database.”);
free (newNode) ;

}

CS270 - Spring 2013 - Colorado State University 27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Deleting a Node

@ Find the node that points to the desired node.
Redirect that node’s pointer to the next node (or NULL).
Free the deleted node’s memory.

amnn
........
. .,
[%4 3
oD .
. .
. .
** ‘e
. .
. .
o .
o
o
*

.

NULL

CS270 - Spring 2013 - Colorado State University 28

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

void DeleteEntry(Car *headPointer)

{
int vehiclelD;
Car *delNode; /* Points to node to delete */
Car *prevNode; /* Points to node prior to delNode */

printf("Enter the vehicle ID of the car to delete:\n");
scanf("%d", &vehiclelD);

prevNode = ScanList(headPointer, vehiclelD);
delNode = prevNode->next;

[* Either there is the car does not exist or */

/* delNode points to the car to be deleted. */

if (deINode != NULL && delNode->vehiclelD == vehiclelD) {
prevNode->next = delNode->next;
printf("Vehicle with id %d deleted.\n\n", vehiclelD);
free(delNode);

}

else
printf("The vehicle was not found in the database.\n");

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Excerpts from Code to Delete a Node

printf (“Enter vehicle ID of car to delete:\n”);
scanf (“%d”, wvehiclelD);

prevNode = Scanlist (head, vehiclelID)
delNode = prevNode->next;

if ((delNode '= NULL)
&& (delNode->vehicleID == vehiclelD))
prevNode->next = delNode->next;
free (delNode) ;

}

else {
printf (“Wehicle not found in database.\n”);
}

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Building on Linked Lists

@ The linked list iIs a fundamental data structure.
« Dynamic
« Easy to add and delete nodes

@ The concepts described here will be helpful
when learning about more elaborate data structures:

« Trees
=« Hash Tables
=« Directed Acyclic Graphs

CS270 - Spring 2013 - Colorado State University

31

