
Name: ____________________ SID: ____________________

CS270 Homework 5

Due Tuesday, April 30 Beginning of the class

Goals

To understand the following aspects of C pointers:

 Basic pointer manipulation

 Functions

 Arrays

 Strings

 Structs

 Static memory allocation

 Dynamic memory allocation

 C pointers and swapping

 C pointers and efficiency

 C pointers to pointers

Instructions

A copy of your written solution is to be turned in on the due date. Try to figure out the output

of the programs before running any code, and only then compare your answer after running

the program. This will maximize your learning, and ensure greater chance of success if

similar questions appear on the final exam. You may write C programs for this assignment,

but these do not need to be handed in. Each question is worth 10 points.

Late Policy

Late assignments will be accepted up to 24 hours past the due date, with a penalty of 25%.

The Assignment

Question 1 (10 points): Basic C Pointers

int i;

float x;

int *pInteger = &i;

float *pFloat = &x;

i = 5555;

*pInteger = 7777;

*pFloat = 3.166;

x = 1.3456f;

printf("i = %d, %d, %d\n", i, *(&i), *pInteger);

printf("x = %f, %f, %f\n", x, *(&x), *pFloat);

a) What is the output of the code shown above?

b) Is there any difference between the address of a variable, and the value of a pointer to that

variable? Yes _____ No _________

c) What would you expect the difference in the addresses of pInteger and pFloat to be?

 _________ bytes

Question 2 (10 points): C Pointers and Functions

void function(int i, int *p, float x, float *y)

{

 i = 3322;

 *p *= 50;

 x = 2.1234;

 *y /= 21.0;

 printf("%d, %d, %f, %f\n", i, *p, x, *y);

}

int i = 12; int j = 4;

float x = 3.468f; float y = 6.678f

printf("%d, %d, %f, %f\n", i, j, x, y);

function(i, &j, x, &y);

printf("%d, %d, %f, %f\n", i, j, x, y);

a) What is the output of the code shown above?

b) Which parameters enable variables outside the function to be changed by the function?

Which do not?

c) The function appears to modify the parameters i and x? Are these values actually

modified? Yes _____ No _________

Question 3 (10 points): C Pointers and Arrays

int iArray[4] = {1, 3, 5, 7};

int *pInteger = &iArray[0];

printf("%d %d %d %d\n", iArray[0], iArray[1], iArray[2], iArray[3]);

iArray[2] *= 2;

*(pInteger+1) *= 4;

pInteger[1] *= 6;

*(iArray+2) *= 8;

printf("%d %d %d %d\n", iArray[0], iArray[1], iArray[2], iArray[3]);

a) What is the output of the code shown above?

b) Are the following identical: pInteger[1], *(pInteger+1), iArray[1] and *(iArray+1)?

Yes ____ No ______

Question 4 (10 points): C Pointers and Strings

char *str = "hello";

char str1[6] = {'w','o','r','l','d','\0'};

for (unsigned int i=0; i<strlen(str); ++i)

{

 printf("str[%d] = %c(%c)\n", i, str[i], *(str+i));

}

printf("str = %s\n", str);

for (unsigned int j=0; j<strlen(str1); ++j)

{

 printf("str1[%d] = %c(%c)\n", j, str1[j], *(str1+j));

}

printf("str1 = %s\n", str1);

a) What is the output of the code shown above?

b) Is there a string data type in C? If not, what is used instead?

Question 5 (10 points): C Pointers and Structs

typedef struct

{

 float f;

 int i;

} Foo;

Foo foo;

Foo *p=&foo;

foo.i = 6879;

foo.f = 4.1f;

printf("foo.i = %d, foo.f = %f\n", foo.i, foo.f);

p->i += 16;

p->f *= 9.0f;

printf("foo.i = %d, foo.f = %f\n", foo.i, foo.f);

a) What is the output of the code shown above?

b) How does the . operator differ from the -> operator with respect to structure access?

c) How many bytes does the struct defined above require on the lab linux systems in the

department? _________ (Lab room number ______)

Question 6 (10 points): C Pointers and Dynamic Allocation

int array1[4];

int array2[8];

int *array3 = (int *)malloc(sizeof(int) * 10);

int *array4 = (int *)malloc(sizeof(int) * 8);

printf("Addresses: %p, %p, %p, %p\n", array1,array2,array3,array4);

a) What is the output of the code shown above? You must run the code to find out.

b) Why are the addresses of array1/array2 so different from array3/array4.

c) Which memory region is used for each allocation?

array1/array2 _____________, array3/array4________________

Question 7 (10 points): C Pointers and Efficiency

typedef struct {

 char cArray[32];

 float fArray[32];

} large;

void f1(large p) {

 printf("sizeof(p) = %d\n", (int)sizeof(p));

}

void f2(large *p) {

 printf("sizeof(p) = %d\n", (int)sizeof(p));

}

large s;

for (int i=0; i<32; ++i) {

 s.cArray[i] = i+30;

 s.fArray[i] = (float) i;

}

f1(s);

f2(&s);

a) What is the output of the code shown above?

b) How many bytes are required on the stack for parameter storage for f1()? f2()?

Question 8 (15 points): C Pointers to Pointers

int i = 321;

int *p = &i;

int **pp = &p;

i = 345;

printf("i = %d\n", i);

*p = 42;

printf("i = %d\n", i);

**pp = 7;

printf("i = %d\n", i);

printf("&i = %p, p = %p, pp = %p, *pp = %p\n", &i, p, pp, *pp);

a) What is the output of the code shown above? You must run the code to find out.

b) Why do &i, p, and *pp all point at the same address?

c) What is pointed at by the “pointer to a pointer” pp?

Question 9 (15 points): Run-time stack and heap visualization

typedef struct listnode Node;

struct listnode {

 int value;

 Node* next;

};

void main() {

 Node* head = (Node*)malloc(sizeof(Node));

 head->value = 42;

 head->next = NULL;

 Node* temp = head;

 head = (Node*)malloc(sizeof(Node));

 head->value = 7;

 head->next = temp;

 head->next->next = (Node*)malloc(sizeof(Node));

 head->next->next->value = 27;

 head->next->next->next = NULL;

}

Draw what the run-time stack and heap look like after the above code executes. Show all of

the parameters, indicate where return addresses are stored, and for any pointers including

the current stack and frame pointer use arrows to show where they are pointing.

Draw Here

