
CS270 Programming Assignment 1
“Radix Conversions”

Due Wednesday, Feb 8 (via checkin by 5:00pm)
Extra credit for early submission and for one additional extension

Homework and programming assignments are to be done individually.

Goals
In this assignment, you will learn C programming and reinforce your understanding of number
representation by implementing C functions to convert numbers from any specified radix into decimal
and to convert decimal numbers into any specified radix. A “specified radix” in this program can range
from 2 to 36.

The Assignment
Make a subdirectory called PA1 for the programming assignment; all files must reside in this
subdirectory. We have provided you with a number of files to complete the assignment. Copy the
following files into your PA1 directory:
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/main.c
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/myfuncti
ons.h
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/myfuncti
ons.c
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/myfuncti
ons_binary.o
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/Makefile

You will need to implement the following functions inside “myfunctions.c”. The skeleton structure has
already been provided for you.

1) int readRadixA (int radixA);
2) char decimalToSymbol(int decimalNumber);
3) void writeRadixB(int decimalNumber, int radixB);

Function 1: readRadixA:
Use Horner's Algorithm (as reviewed in lecture) to convert a null-terminated sequence of char

into a number (int in C). Read characters from standard input, convert this number into an integer,
print this, and return it.

To complete this function, you will need to utilize a provided helper function,
symbolToDecimal, which converts a digit from radixN (i.e., a char that is either a digit or an upper case
letter) into its decimal equivalent, e.g., the character 0 (ascii 48) is mapped to the integer 0, written as
‘0’ → 0, ‘1’ → 1, …, ‘9’ → 9, ‘A’ → 10, ‘B’ → 11, …, ‘Z’ → 35. This provides 36 unique symbols
which we will use to represent numbers with bases ranging from 2 to 36.

Function 2: decimalToSymbol:
Read the symbolToDecimal function that is provided. Understand how it converts, symbol to

decimal number using ascii conversion. You can then, write this function to return the decimal
equivalent of given symbol.

To complete this function, you will need to convert an integer into its radixN equivalent char,

http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/main.c
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/Makefile
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/myfunctions_binary.o
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/myfunctions_binary.o
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/myfunctions.c
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/myfunctions.c
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/myfunctions.h
http://www.cs.colostate.edu/~cs270/.Spring12/Assignments/PA1/myfunctions.h

written as, ‘0’ → 0, ‘1’ → 1, …, ‘9’ → 9, ‘A’ → 10, ‘B’ → 11, …, ‘Z’ → 35.

Function 3: writeRadixB:
Use repeated division and modulo operations (as reviewed in lecture) to convert an integer into

characters (using a function decimalToSymbol that you have to write). The integer, decimalNumber,
represents a non-negative number in radix 10, and must be converted into the radix specified by
argument radixB and print the characters in radixB.

To complete this function, you will need to write the helper function, decimalToSymbol, which
converts a decimal value into its radixN equivalent char, e.g., 0 → 0, 1 → 1, …, 9 → 9, 10 → A, 11 →
B, …, 35 → Z. For those who are unable to write decimalToSymbol, we are providing you with a
binary myfunctions_binary.o, so that, you can still verify your function writeRadixB even when you
are not able to write the previous function. To use this binary you can use command “make binary”.

Compile and Run:
We provided you with a Makefile to compile the program.
Compile as follows:
%> make
or (using binary)
%> make binary

The program is executed as follows:
%> pa1
The program will then prompt you to enter the fromRadix (enter radixA) and toRadix (enter radixB).

Try the program with the following test cases:
Test 1:
Enter the fromRadix:16
Enter the toRadix:2
Enter radixA Number: ABC

Outputs must be:
2748
101010111100

Test 2:
Enter the fromRadix:5
Enter the toRadix:17
Enter radixA Number: 33342

Output must be:
2347
821

Calculate these results by hand and verify if you are getting the correct output. We will run your
program using different inputs, so DO NOT HARDCODE values!

For this assignment you must also submit a README file with your name and answers to the
following questions. Copy the question into the file and then type in the answer after the question.

Question 1: Are you doing your assignments on the school machines or at home? If at school what is
the name of the machine you are using to answer these questions?
Question 2: Type gcc --version on the command line and write down the output. This assumes Linux,
if you are running on another operating system, then write down the compiler version.

Submission Instructions
When you are done, your directory should have main.c, myfunctions.c, myfunctions.h, Makefile and a
README file. To package the files into a single compressed file, type the following command from
inside PA1 directory:

%> cd PA1
%> make pack

This will create a file called PA1.tar.gz one directory above PA1. All assignments will be submitted
directly via checkin, which will be explained and demonstrated in recitation. A sanity check of your
PA1.tar.gz will ensure that your submission has all the required files:

%> mkdir ~/Temp
%> cp PA1.tar.gz ~/Temp
%> cd ~/Temp
%> tar -zxvf PA1.tar.gz
%> ls PA1

Grading Criteria
Points will be awarded as follows: functionality - 75 points (30 for function #1 and 15 for function #2
and 30 for function #3), coding style and comments - 10 points, following assignment directions - 5
points, and supplying answers to the README questions - 10 points. The grading factors we consider
for coding style include having clear and concise comments, consistent indentation, and the minimal
amount of code to solve the problem. You will also need to ensure that every function (declared in
myfunctions.h) has a properly formatted description header. The extra credit problem will be 10
points.

Extra Credit
Use of lower case letters and upper case letters for function symbolToDecimal. The user should be able
to input char a or A, b or B, c or C....z or Z and the function symbolToDecimal will produce 10 for both
a and A, 11 for both b or B...35 for z or Z.

Late Policy
Our late policy is intended to m=penalize late submissions. Since we were late in posting this
assignment, we deserve a penalty (i.e., you deserve “free” extra credit). Our original submission
deadline was going to be Monday Feb 6. Now the deadline is Wed Feb 8, but if you submit by the
original due date, you can get 20% extra credit. Late assignments will be accepted up to 48 hours past
the due date with a deduction of 10% per 24 hours. Late assignments will not be accepted after 48
hours. Please contact the instructor or teaching assistant if you have problems with checkin. So here’s
how we will calculate your final score. We grade the assignment out of 100 points (max score 110
with extra credit). This will be multiplied by either 1.2, 1.1, 1, 0.9 or 0.8 depending on when you
submit.

