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Abstract

The all-du-paths software testing criterion is the most dis-
criminating of the data 
ow testing criteria of Rapps and
Weyuker. Unfortunately, in the worst case, the criterion re-
quires an exponential number of test cases. To investigate
the practicality of the criterion, we develop tools to count

the number of complete program paths necessary to satisfy
the criterion. This count is an estimate of the number of
test cases required. In a case study of an industrial software
system, we �nd that in eighty percent of the subroutines
the all-du-paths criterion is satis�ed by testing ten or fewer
complete paths. Only one subroutine out of 143 requires an

exponential number of test cases.

Keywords: Data 
ow analysis, software testing, software
measures.

1 Introduction

A major activity in software testing research is deriving cri-
teria that aid in selecting the smallest set of test cases that

will uncover as many errors as possible. Structural testing
uses the control and data 
ow of a program to select test
cases.
Testing criteria that are more discriminating in uncover-

ing errors tend to require a greater number of test cases. For

example, the \all branches" criterion is more discriminating
than the \all statements" criterion and usually requires more
tests. The most discriminating criterion is the \all paths"
criterion which requires an in�nite number of test cases in
programs with loops. Since we want testing to be completed
eventually, a useful criterion must be met with a �nite and

acceptably small number of test cases.
Several analytical studies compare structural testing cri-

teria with respect to inclusion and worst case complexity of
the criteria [Wey84, WGM85, CPRZ85, RW85, Nta88]. The
\all branches" criterion includes the \all statements" crite-
rion because when the \all branches" criterion is met the

\all statements" criterion is also satis�ed. The complexity

of a criterion refers to the worst case growth in the number of
test cases required to satisfy the criterion as a size attribute
of a program increases.

Ntafos suggests the use of strategies that require at most
O(n2) test paths [Nta88]. Ntafos also notes that these worst
case bounds may not re
ect the actual number of required
test cases. Our research is directed towards determining
whether testing strategies that have an exponential worst

case bounds may actually be feasible on real programs.
Some of the more discriminating structural testing crite-

ria are based on data 
ow analysis. Rapps and Weyuker

de�ne a family of path selection criteria based on data 
ow
relationships [RW85]. These criteria focus on the program
paths that connect the de�nitions and uses of variables (du-
paths). Of these criteria, the all de�nition/use criterion (all-
du-paths) is the \strongest". The all-du-paths criterion re-

quires that the test data cover all du-paths in a program.
This criterion includes all of the other data 
ow criteria and
requires the greatest number of paths in a program to be
tested. Thus, the all-du-paths criterion should be the most
e�ective of the data 
ow criteria in discovering errors.

Unfortunately, it may take an exponential number of test
cases to meet the all-du-paths criterion. Weyuker shows that
the all-du-paths criterion requires 2t test cases in the worst

case, where t is the number of conditional transfers [Wey84].
A testing strategy that requires an exponential number

of test cases is not realistic. However, the actual number
of test cases can be much less than the worst case. Only
an empirical study can determine whether the worst case
scenario is common.

In this study, we determine the du-paths in a software sys-
tem in use commercially. The software is a natural language
text analyzer used for marketing research. After identify-
ing the du-paths, we estimate the minimum number of test

cases necessary to satisfy the all-du-paths criterion. Our es-
timate is based on �nding a minimal sized set of complete
paths (paths from the start node to the terminal node of a
program 
owgraph) that covers all of the du-paths. Each
complete path can be \exercised" by one test case if appro-
priate input data can be found. We �nd that for most of

the subroutines, the all-du-paths criterion can be satis�ed
with fewer than ten complete paths. Only one subroutine re-
quires an exponential number of complete paths. One other
subroutine requires a comparatively large number of paths.
Thus, our results indicate that the all-du-paths criterion can
be used to test most of the subroutines in the software sys-

tem under study.
The number of complete paths needed to meet the crite-



rion is an estimate of the number of test cases required to
meet the criterion. Some complete paths of a program may
be infeasible | no input data exists that can cause such a
path to be executed. Similarly, some du-paths may be infea-
sible. Thus, it might be impossible to select test data that
satis�es the particular criterion. Unfortunately, determining

whether a particular path is feasible is undecidable. Frankl
and Weyuker suggest the use of heuristics to identify infeasi-
ble paths [FW88]. Since some complete paths and du-paths
may be infeasible, our measure of the necessary number of
complete paths will tend to be higher than the number of
feasible paths.

Our research tools are based on a formal speci�cation of
the all-du-paths criterion [Sch88]. This speci�cation is writ-
ten in the SPECS speci�cation language [BBC87] in terms

of a language-independent representation (StandardRep) of
imperative programs [BBC*88]. This speci�cation of the all-
du-paths criterion is applicable to any imperative language
that can be mapped to the StandardRep.

We utilize a tool [DBB86] that generates a StandardRep

from an ISO Standard Pascal [JW85] program. The output
routines of the generator are modi�ed to produce a Prolog
data base for each program unit. Each data base represents
an augmented 
owgraph in which the nodes and edges are
included, along with the variables which are de�ned and

used in each node. A Prolog program estimates the mini-
mum number of complete paths that satisfy the all-du-paths
criterion for the corresponding program unit. All tools used
in this research are rigorously speci�ed using SPECS.

A related system developed by Frankl and Weyuker, AS-
SET, determines whether a given test set is adequate with
respect to the criterion, and produces a list of any node
pairs required by the criterion but not exercised by the
test data [FWW85, FW85]. This list can then be used to

strengthen the test data set. In contrast, our research tools
are designed to estimate the number test cases required by
the all-du-paths criterion. ASSET is designed for use on
a speci�c subset of Pascal, while our tools operate on the
StandardRep.

This paper has the following organization. The next sec-
tion describes the all-du-paths criterion. We describe the
tools used in the study in Section 3. These software tools
include the programs that (1) generate a Prolog data base
from a StandardRep, (2) compute all du-paths in a program,

(3) remove redundant du-paths, and (4) estimate the num-
ber of test cases needed to meet the all-du-paths criterion.
Section 4 describes the natural language text analysis sys-
tem that is the object of this study. The case study results
are described in Section 5 and the conclusions follow in Sec-
tion 6. The Appendix contains tables of the case study

results.

2 All-du-paths Criterion

The all-du-paths path criterion is based on data 
ow rela-

tionships. Variables are tracked from their points of de�ni-
tion to their points of use. A du-path is a program path that
connects the de�nition of a variable to its use. By de�ni-

tion we mean the modi�cation of the value associated with
a variable via an assignment, input statement, or procedure
invocation. A use is a reference of the value of a variable usu-

ally within an expression. In addition, cycles are restricted
within a du-path. For testing to satisfy the all-du-paths
criterion, the test data must cover all du-paths for all vari-
ables in a procedure. Thus, all acyclic paths between every
de�nition-use pair must be tested.

Rapps and Weyuker de�ne their family of criteria on a
simple, formal programming language [RW85]. We use a
rigorous speci�cation of the all-du-paths criterion in terms
of a language independent representation of imperative pro-
grams, the StandardRep [Sch88, BBC*88]. Our speci�cation

is consistent with the original de�nitions, and applies to any
imperative programming languages that can be mapped to
the StandardRep.

To incorporate procedures and functions in our de�nition,
we determine which of the actual parameters are de�ned and
which are used at the point of a call. In a procedure call, we
assume that a variable which represents a call-by-reference
parameter is de�ned. We also assume that the variables
in an expression which represents a call-by-value parameter

are used. All call-by-value formal parameters are assigned
to local variables in the start node of the called procedure
by the StandardRep generator [DBB86]. We also assume
that all global variables accessed by the called procedure
are used at the point of a procedure call, and all variables
in the actual parameters of a function call are used.

Our speci�cation makes use of the notion of \path subset
criterion" [BHB86]. Consider a 
owgraph G = (N;E; s; t),
where E � N�N; s 2 N; t 2 N , and all nodes x 2 N lie on a

path from s to t. Any path P from s to t is a complete path.
A path subset criterion is a boolean function that, given a
set of complete paths in a 
owgraph, outputs true if and
only if the set of paths satis�es the criterion. When using a
path subset criterion as a testing criterion the set of paths
is �nite.

Let AllDUPaths(G) denote the set of all du-paths in 
ow-
graph G, and let all-du-paths(FS,G) be a path subset crite-
rion that determines if a particular set of complete paths,
FS, includes all du-paths in G. Then all-du-paths(FS,G)

is true if and only if every member of AllDUPaths(G) is
included along some path in FS. The complete formal spec-
i�cation of the all-du-paths criterion is in [Sch88]. In this
speci�cation, AllDUPaths is de�ned in SPECS as an ab-
stract function in terms of the StandardRep. Since we can
generate a StandardRep from ISO Pascal [DBB86], our spec-

i�cation can be used to implement tools that operate on
Pascal programs. As soon as StandardRep generators for
other languages are implemented, our tools can be applied
to programs in these languages.

3 Research Tools

Our research tools identify du-paths and count the mini-
mum or near-minimum number of complete paths required
to satisfy the all-du-paths criterion for a program unit (pro-
cedure or function). The analysis is performed in two dis-

tinct phases. In the �rst phase, a Prolog data base (PDB)
is produced for each unit of a Pascal program. In the sec-
ond phase, a Prolog program Count takes a PDB as input,
�nds all of the du-paths, and outputs a count of the number
of du-paths, the number of non-redundant du-paths, and
an estimate of the number of complete paths, or test cases,
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necessary to satisfy the criterion.

3.1 Producing the PDB's for a Program

The PDB's for a Pascal program are generated from a Stan-
dardRep [BBC*88]. The original StandardRep generator
takes a Pascal program as input and produces the corre-
sponding StandardRep as output [DBB86]. The output rou-
tines of the original generator were modi�ed to produce a

PDB for each program unit. A listing of the modi�ed C out-
put routines appears in [Sch88] and the original StandardRep
generator is in [DBB86].
A PDB consists of an annotated 
owgraph for one pro-

cedure or function. A procedure or function is represented
as a UnitRepType in the StandardRep. A PDB contains just

the information in a UnitRepType object that is needed for
our analysis. The structure of a PDB may be speci�ed in
SPECS by the following type de�nitions. (In the following
de�nitions, DCP stands for de�nitions, c-uses and p-uses.)

PDB = 3-tuple(

Nodes : set of NodeID,

DCP : set of DCPType,

Edges : set of EdgeType)

DCPType = 4-tuple(

NID : NodeID,

D : set of VarID,

C : set of VarID,

P : set of VarID)

For an object X of type PDB for a program unit U ,
Nodes(X) and Edges(X) represent the nodes and edges in the
corresponding 
owgraph of U . Each element E in DCP(X)

contains data 
ow information for node NID(E), including
the global de�nitions, D(E), global c-uses, C(E), and p-
uses, P (E).

The abstract operation that produces a PDB from a par-
ticular UnitRepType is formally speci�ed in [Sch88]. A PDB

is represented by Prolog lists. Figure 1 illustrates a PDB

as represented with Prolog data objects for a program unit
named \test".
Note that the terminal node t is not included in the list

of nodes in the Prolog PDB, nor is any information for node
t given. (t still appears in the edges, though). Since there
are no global de�nitions or uses in t, t cannot contribute to
any du-paths.
Also note that the global c-uses and p-uses in a Prolog

PDB include not only variables, but constants as well. Con-
stants are included because the implementation of the orig-
inal StandardRep generator does not distinguish between a
variable ID and a constant ID. Since a constant can never
occur as a global de�nition, the constants that appear in
the other lists do not contribute to any du-paths. In e�ect,

these constants may be ignored.
A Prolog PDB is the input to the Prolog program Count

which identi�es the du-paths and computes the various path
counting measures.

3.2 The Prolog Program Count

Count is implemented in Prolog. The built-in backtracking
features of Prolog are well suited for graph searches, and

nodes([s,1,2]).

global_defs(s,[input]).

global_c_uses(s,[]).

p_uses(s,[]).

global_defs(1,[x,y]).

global_c_uses(1,[y]).

p_uses(1,[x,y,2,3]).

global_defs(2,[stop,10,x,z]).

global_c_uses(2,[]).

p_uses(2,[stop,100]).

edge(s,1).

edge(s,2).

edge(1,2).

edge(2,t).

Figure 1: An example PDB.

allow our algorithms to be speci�ed at a higher level than
possible using a conventional programming language such
as Pascal or C. However, by using Prolog, we sacri�ce ex-
ecution speed. This sacri�ce is not signi�cant except when
examining large PDB's.
We describe the algorithm in terms of the abstract repre-

sentation of a PDB. There are four main steps in the algo-
rithm:

1. Find all of the du-paths using the PDB. The number of
du-paths is output.

2. Find the successor nodes for each node in the PDB.

3. Remove redundant du-paths found in Step 1. The num-
ber of remaining du-paths is output.

4. Determine the cardinality of a \small" set of complete

paths that include all of the du-paths from Step 3.
These complete paths correspond to (potential) test
cases and the number of such paths is output.

3.2.1 Finding the du-paths

In this step, all du-paths of a program unit are identi�ed.
The following three speci�cation expressions, which are de-

�ned in terms of the abstract PDB type, will be utilized in
the discussion. They specify the set of global de�nitions,
global c-uses and p-uses for a given node ID.

gdefs (P : PDB, NID : NodeID) as set of VarID
such that gdefs(P;NID) =
fv j 9x[x 2 DCP (P ) ^ NID(x) = NID ^ v 2 D(x)]g

cuses (P : PDB, NID : NodeID) as set of VarID
such that cuses(P;NID) =
fv j 9x[x 2 DCP (P ) ^ NID(x) = NID ^ v 2 C(x)]g

puses (P : PDB, NID : NodeID) as set of VarID
such that puses(P;NID) =
fv j 9x[x 2 DCP (P ) ^ NID(x) = NID ^ v 2 P (x)]g
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To calculate the du-paths, all ordered node pairs i and j,
where i; j 2 Nodes(PDB), are examined in turn for the du-
paths between them. For a graph with n nodes, there are
n(n�1) distinct node pairs. We do not include the terminal
node t in any node pairs.

The following sets are calculated for each ordered node
pair:

c vars(i; j) = gdefs(PDB; i) \ cuses(PDB; j)
p vars(i; j) = gdefs(PDB; i) \ puses(PDB; j)

When both c vars and p vars are empty there are no du-
paths between i and j. Such a pair is discarded and the next
node pair is examined.

If either c vars or p vars is non-empty, Prolog conducts
a depth-�rst search for a du-path between nodes i and j.
As each new node k is examined along the path, c vars and

p vars are recalculated as follows:

c vars(i; j) := c vars(i; j)� gdefs(PDB; k)
p vars(i; j) := p vars(i; j)� gdefs(PDB; k)

The recalculation is necessary because a de�nition of a
variable v on a path from node i to node j makes the def-
inition of v in i unusable. The rede�nition of v \kills" the
earlier de�nition of v. So if both sets become empty, the cur-
rent node is discarded and backtracking occurs to search for

an alternate path. If and when node j is reached, a du-path
has been found and it is written to an output �le.

After each du-path is found and written to the output �le,
FAIL is used to force Prolog to backtrack and �nd another
du-path from the point at which it left o�. Thus, all du-
paths for a particular node pair are found. Backtracking
is employed at two points: after each du-path is found and

when a new node is encountered along a potential du-path
that causes both c vars and p vars to become empty.

The du-paths appear in the output �le as a Prolog list of
lists:

du_paths([[1,2,3],

[1,2,4],

[1,3,4],

[1,2,4,5],

[1,3,4,5],

[6,5],

[6,5,6],

[6,5,7]]).

3.2.2 Node Successors

In this step we determine the successor nodes for each node
in the node list of the PDB. A sequence of successor nodes

for a particular node n1 consists of all n2 in the node list such
that there exists a path from n1 to n2. Prolog searches the
edges in such a way that the sequence of successor nodes is
in nondecreasing order according to the lengths of the paths
from n1 to n2. All of these sequences of successor nodes are
written to the output �le and accessed in the Step 4.

3.2.3 Condensing the du-paths

A number of the du-paths found in Step 1 must be elim-
inated to prevent the inclusion of one or more redundant
complete paths. For example, if we have the du-paths

[1,2,3,4,5] and [2,3] and test cases cause execution to tra-
verse the �rst path, we have also traversed the second one.
As a result, the second path may be eliminated without con-
sequence.

To condense the list of du-paths, each du-path is exam-

ined and if it is \included" on another du-path in the list it is
eliminated. The concept of one path (P1) being included on
another path (P2) can be expressed by the following speci-
�cation expression:

Included (P1 : sequence of NodeID,

P2 : sequence of NodeID) as boolean
such that Included (P1; P2) �
9i[1 � i � (length(P2)� length(P1) + 1) ^
8j[1 � j � length(P1)) P1j = P2i+j�1]]

For example, [2,4,5], [4,5,8] and [5,8,9,10] are all included on

[1,2,4,5,8,9,10], but [8,9,10,11,12] is not.

3.2.4 Counting complete paths

The �nal step of the Prolog algorithm estimates the fewest
number of complete paths that include all of the du-paths.
This part of the algorithm is described as follows. We
start with a count of 1. We then \overlap" and \piece to-
gether" as many du-paths as possible along one complete
path. The count is then incremented and each selected du-

path is deleted from the list of du-paths. This process is
repeated until the list of du-paths is empty. The �nal out-
put of Count is the �nal value of the count. During this step
the output �le is accessed for the list of condensed du-paths
found in Step 3 and the successor nodes found in Step 2.

For example, we begin by looking for a du-path that starts
with the start node s. If [s,1,2,3,4,5] is initially selected, the
next du-path we look for in the list should begin with the
initial sequence of [1,2,3,4,5,...]. (There cannot be another
du-path that begins with [s,1,2,3,4,5,...] due to the condense

step.) If such a path does not exist, we try [2,3,4,5,...], then
[3,4,5,...], etc. If we come to [5,...], we then start looking at
the successors of node 5, trying to �nd a du-path that starts
with the closest successor node. If, after trying all successor
nodes, we have no luck, we increment the count and look
again for a du-path that starts with the start node s. When

we do select a du-path, the next du-path we look for should
start with the tail of the selected path. The selected du-path
is deleted from the list. The program terminates when the
list of du-paths becomes empty.

The algorithm does not guarantee that the �nal value for
Count is the minimum number of complete paths that in-
clude the du-paths. Suppose we are looking for a du-path
that starts with a particular sequence of nodes, and that
more than one such du-path exists. Count picks the �rst
path it �nds in the list. But perhaps one of the other choices

would allow more du-paths to be included along the com-
plete path. A lower value for Count could result.

Thus, the value of Count is dependent upon the order of
the du-paths in the list. However, since Count tries to make
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the best choice for every selection, the algorithm is a reason-
able one for �nding a value close to the minimum number
of complete paths required to include the du-paths.

4 Case Study Data: the NLTAS

A natural language text analysis system (NLTAS) is the
software that is the data for our study. The NLTAS is used
to analyze verbatim responses to open ended surveys used

in marketing research. An expert analyst uses the system to
identify, within natural language text, the words and phrases
that correspond to a speci�ed set of \meaning units." The
NLTAS is a product of Iris Systems, Inc. and has been
in commercial use since 1985. The system consists of �ve

Pascal programs with a total of 143 subroutines (procedures
and functions). The system has a total of 7,413 lines of
code (including comments). Thus the average length of a
subroutine is 52 lines of code. The longest subroutine is 367
lines of code. All but ten of the subroutines are shorter than
100 lines of code.

We generated a StandardRep from the original source
code, and performed the analysis using the StandardRep of
the system. The StandardRep is an abstraction of the code
that contains the information necessary for our analysis, but
hides proprietary details.

5 Results

For each procedure or function in the NLTAS we record the

following data:

1. Number of lines of code (Lines) not including com-
ments,

2. Number of nodes in the 
owgraph representation of the
program unit (Nodes),

3. Number of edges in the 
owgraph (Edges),

4. Number of du-paths (Du-Paths),

5. Number of non-redundant or condensed du-paths (Con-
densed), and

6. Estimated minimal number of complete paths required
to meet the all-du-paths criterion (Count).

The above measures for each of the program units are in the
Appendix.
The most striking �nding is that in 115 of the 143 subrou-

tines (80%) the all-du-paths criterion can be met with ten or
fewer complete paths. And, in 91% of the subroutines, the

all-du-paths crition can be met with 25 or fewer complete
paths. Figure 2 illustrates these results.
Only four subroutines or 2.8% require more than 100 com-

plete paths. Two of these subroutines require the testing
of more than a practical number of tests. One subroutine

(A18) exhibits exponential behavior and requires the testing
of at least 232 complete paths. Another subroutine (A59) re-
quires the testing of on the order of 10,000 complete paths.
Due to machine and time limitations, exact counts of the
required number of complete paths for subroutines A18 and
A59 could not be computed.

Figure 2: Required Number of Complete Paths

The results in the Appendix appear to indicate that the
Count is dependent on subroutine length (Lines). However,
the longest subroutine in the system (A68) with 367 lines of
code has a Count of 76. An examination of A18 reveals the

cause of the required exponential number of complete paths
necessary in this case.
The code in A18 that causes the exponential result has

the following structure:

De�ne X: X := Y;

if P1 then S1;

if P2 then S2;
...

if P32 then S32;

Use X: Y := F(X);

where X is not modi�ed in statements S1 through S32.
There are 232 paths between the de�nition of X and the

use of X and each path is a distinct du-path.
In the NLTAS, code with a structure similar to the for-

going is rare; only subroutine A18 requires an exponential
number of complete paths. In almost all of the subroutines,
the all-du-paths criterion is satis�ed by testing a reasonable
number of complete paths. These results indicate that the

all-du-paths testing criterion can be used on most of the
subroutines in the system.

6 Conclusions

In this paper, we describe a tool that estimates the number
of test cases required to meet the all-du-paths testing crite-

rion. We use this tool to empirically evaluate the practicality
of the criterion. In the worst case, the all-du-paths criterion
requires an exponential number of test cases. However, in
this case study, the worst case scenario only occurs in one
subroutine out of 143. Eighty percent of the subroutines

would require ten or fewer test cases.
These results demonstrate that the all-du-paths criterion

may be a more realistic criterion than the theoretical re-
sults indicate. The all-du-paths criterion should not be com-
pletely avoided because of the few subroutines that require
an exponential number of test cases. Of course, the criterion
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is not practical for testing these subroutines and alternative
testing strategies must be used. Note that the other data

ow criteria of Rapps and Weyuker require fewer test cases
than the all-du-paths criterion.
A tool similar to the Count program can be used to iden-

tify these anomalous subroutines and either recode them or

use an alternative testing strategy. One could use a tool
such as ASSET to assist in �nding input data to meet the
criterion. And Count can be used to predict how many test
cases may be required.
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Appendix: Table of Case Study Results

The following tables contain the results of the case study.
The number of lines (Lines) for each program unit was ob-
tained from the actual program code. The number of nodes
(Nodes) and edges (Edges) for each unit was obtained from
the corresponding PDB. (The node list in a PDB does not
contain the terminal node, t, so the values for nodes in this
report have been increased by one.) The value for the num-
ber of du-paths (DUP), condensed du-paths (Cond), and
the number of complete paths required to satisfy the all-
du-paths criterion (Count) were generated as described in
Section 3.

Program A

Unit Lines Nodes Edges DUP Cond Count

A1 40 14 18 57 24 7

A2 41 18 23 47 20 7

A3 24 8 9 14 5 3

A4 43 15 20 35 17 10

A5 59 11 14 14 6 5

A6 50 21 28 83 32 12

A7 18 9 11 23 10 5

A8 10 8 9 24 12 3

A9 21 8 10 22 6 4

A10 53 16 22 67 24 17

A11 21 5 5 4 2 2

A12 24 14 19 18 7 7

A13 32 12 15 33 14 8

A14 32 16 20 74 25 15

A15 13 7 8 14 8 4

A16 47 12 15 28 11 5

A17 16 8 9 19 9 4

A18 252 118 183 a a a

A19 25 8 9 21 8 3

A20 10 3 2 1 1 1

A21 13 7 8 14 7 3

A22 47 12 17 28 11 6

A23 36 15 18 55 18 5

A24 57 15 18 50 17 6

A25 62 27 35 110 42 8

A26 24 8 9 19 9 3

A27 40 14 17 40 15 5

A28 24 6 6 11 4 2

A29 35 12 14 31 13 6

A30 53 23 31 96 39 16

A31 13 7 8 14 7 3

A32 19 10 12 25 11 5

A33 50 14 20 46 15 8

A34 40 20 26 72 26 10

A35 84 27 35 114 45 12

A36 25 6 6 10 4 2

A37 44 24 31 87 39 13

A38 35 14 17 54 18 5

A39 37 10 12 20 4 4

A40 19 6 6 9 4 2

A41 31 8 9 18 6 2

A42 20 8 9 27 9 3

A43 32 6 7 14 3 3

A44 68 32 48 172 59 44

A45 66 17 23 115 50 9

A46 100 40 53 267 93 33

A47 41 13 17 39 16 4

aThe number of du-paths, condensed du-paths, and Count is on
the order of 232 and is not practical to compute.

Unit Lines Nodes Edges DUP Cond Count

A48 96 26 36 117 40 24

A49 48 20 25 68 28 4

A50 76 22 29 94 34 7

A51 101 25 32 76 27 9

A52 19 7 8 7 3 3

A53 49 13 16 45 17 4

A54 18 5 5 7 5 3

A55 66 12 15 38 16 7

A56 31 8 9 21 10 3

A57 91 29 40 1071 576 336

A58 59 19 26 91 31 24

A59 309 92 128 10822 b b

A60 38 12 15 55 25 6

A61 15 4 4 3 2 2

A62 23 9 11 10 4 4

A63 21 9 11 22 10 5

A64 11 5 5 7 5 3

A65 29 9 11 32 16 5

A66 33 11 14 39 14 7

A67 32 11 14 39 14 7

A68 367 71 110 554 376 76

bThe Prolog rule containing the du-paths is too large (2.07 Mbytes)
for c-prolog to read. Our c-prolog implementation can read rules of a
maximum size of 256 Kbytes.

Program B

Unit Lines Nodes Edges DUP Cond Count

B1 14 7 8 11 7 3

B2 97 22 30 306 166 36

B3 47 13 16 25 10 6

B4 47 12 15 39 14 3

B5 85 17 15 150 52 9

B6 55 26 34 91 38 18

B7 51 19 24 57 18 7

B8 29 10 12 24 10 4

B9 27 7 8 16 6 3

B10 22 6 7 12 5 4

Program C

Unit Lines Nodes Edges DUP Cond Count

C1 46 14 18 47 18 18

C2 138 31 44 286 152 60

C3 13 5 5 7 4 3

C4 73 22 31 118 47 33

C5 33 10 12 24 10 4

C6 9 3 2 0 0 1

C7 25 9 11 10 4 4

C8 13 3 2 1 1 1

C9 28 11 14 38 17 6

C10 20 10 12 34 11 4

C11 17 4 4 5 2 2

C12 21 8 10 29 8 8

C13 29 11 14 38 17 6

C14 21 10 12 34 11 4

C15 17 4 4 5 2 2

C16 28 7 8 11 3 3

C17 40 6 7 14 4 4

C18 26 10 12 26 10 5

C19 43 10 13 45 16 4

C20 31 9 11 33 10 6

C21 53 18 25 199 66 60

C22 53 18 25 199 66 60

C23 134 15 20 48 15 9
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Program D

Unit Lines Nodes Edges DUP Cond Count

D1 33 11 14 39 14 7

D2 32 11 14 39 14 7

D3 37 23 29 76 34 7

D4 256 47 64 1338 406 295

Program E

Unit Lines Nodes Edges DUP Cond Count

E1 19 11 14 28 10 8

E2 12 3 2 0 0 1

E3 28 11 13 32 14 4

E4 43 15 20 35 17 10

E5 68 13 17 22 9 7

E6 62 16 22 63 22 14

E7 11 5 5 4 2 2

E8 24 13 19 18 7 7

E9 25 8 9 21 8 3

E10 10 3 2 1 1 1

E11 50 21 22 83 32 12

E12 13 7 8 14 7 3

E13 47 12 17 28 11 6

E14 34 12 14 41 16 4

E15 57 15 18 50 17 6

E16 34 17 21 58 21 8

E17 53 23 31 96 39 16

E18 13 7 8 14 7 3

E19 19 10 12 25 11 5

E20 50 14 20 46 15 8

E21 40 20 26 72 26 10

E22 84 27 35 108 43 12

E23 17 6 6 9 4 2

E24 26 5 6 12 3 3

E25 67 17 23 111 48 9

E26 100 40 53 267 93 33

E27 41 13 17 39 16 4

E28 68 19 26 54 21 12

E29 48 20 25 68 28 4

E30 78 22 29 94 34 7

E31 17 9 10 20 7 3

E32 14 8 9 19 7 3

E33 16 7 8 5 4 3

E34 39 12 15 44 21 6

E35 13 4 4 3 2 2

E36 14 8 9 24 9 3

E37 16 7 8 15 5 3

E38 215 18 23 156 62 10
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