Department of

Computer Science

A Survey of Distributed Mutual
Exclusion Algorithms

Martin G. Velazquez
Technical Report CS-93-116
September 6, 1993

Colorado State University

A SURVEY OF DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS

1. INTRODUCTION.

Over the last decade distributed conputing systens have attracted a
great deal of attention. This is due, in part, to the technol ogica

advances in the design of sophisticated software and comrunicati on
interfaces, the availability of |ow cost processors and the rapid
decline in hardware costs. The notivations for building distributed
conputing systenms are many. Resource sharing, parallel processing

system availability and communication are four nmmjor reasons. By
distributing a conputation anong various sites, processes are allowed
to run concurrently and to share resources, but still work
I ndependent |y of each ot her.

Many distributed conputations involving the sharing of resources anong
vari ous processes require that a resource be allocated to a single
process at a tinme. Therefore, mutual exclusion is a fundanmental problem
in any distributed conputing system This problem nust be solved to
synchroni ze the access to shared resources in order to maintain their
consistency and integrity. The major goal of this paper is to get the
reader acquainted with all relevant major approaches for solving the
mut ual excl usion problemin distributed conputing systens.

This paper describes the principles and characteristics of diverse
di stributed mutual exclusion algorithms for distributed conputing
systens. Their mmjor design approaches, the assunptions made about the
distributed environment, and the order of magnitude of nmessage
conplexity will be described. Three papers are presented that introduce
a new concept in allowng nmultiple processes to enter a critical
section simultaneously.

The rest of the paper is organized as follows: in Section 2, the
requi renents for nutual exclusion algorithns are fornulated and
characteristics and assunptions about the distributed environnent are
di scussed. In Section 3, distributed mutual exclusion algorithnms are
classified by two basic design approaches, and the two approches are
descri bed. Sections 4 and 5 are dedicated to the description of diverse
di stributed mutual exclusion algorithnms grouped by their nmajor design
approach. In Section 6, three algorithnms that are designed to all ow
mul tiple simultaneous entries to the critical section are described.
Concluding renmarks are presented in Section 7.

2. MUTUAL EXCLUSION IN DISTRIBUTED COMPUTING SYSTEMS
A distributed conputing systemis a collection of autononous conputi ng

sites that do not share a global or common nenory and comrunicate
sol ely by exchangi ng nessages over a conmunication facility.

In a distributed conmputing system any given site (also refered to as
"node") has only a partial or inconplete view of the total systemand a
systemwi de conmon cl ock does not exist. Processes nust share common
har dware or software resources, cooperating in such a way that they can
work in parallel and independently of each other. The access to a
shared resource nust be synchronized to ensure that only one process is
maki ng use of the resource at a given tine.

Each process has a code segnent, called a critical section, in which
the process can access the shared resource. The problem of coordinating
the execution of critical sections by each process is solved by
providing nutually exclusive access in tinme to the critical section. A
process is said to execute repeatedly a sequence of non-critica
section code and critical section code segnents, each of finite
execution tinme. Each process nmust request permssion to enter its
critical section and nust release it after it has conpleted its
executi on.

A nutual exclusion algorithm nust satisfy the follow ng requirenents
[23, 10]:

1. At npst one process can execute its critical section at a given
time.

2. 1f no process is in its critical section, any process requesting
to enter its critical section nust be allowed to do so in finite
tine.

3. Vhen conpeting processes concurrently request to enter their
respective critical sections, the selection cannot be postponed
indefinitely.

4. A requesting process can not be prevented by another one to
enter its critical section within a finite del ay.

To sinplify, an algorithm nust provide nutually exclusive access to a
resource, ensure deadl ock freedom ensure starvation freedom and nust
provi de sone fairness in the order that requests are granted.

Two approaches can be used to inplenent a nutual exclusion nmechanismin
a distributed conputing system In a centralized approach, one of the
nodes functions as a central coordinator. Processes ask only the
coordinator for permssion to enter their critical section. Only when a
requesting process receives perm ssion from the coordinator can it
proceed to enter its critical section. The central coordinator is fully
responsi ble for having all the information of the system and for
granting perm ssion to make use of a shared resource.

In a distributed approach, the decision making is distributed across
the entire system and the solution to the nutual exclusion problemis
far nore conplicated because of the difficulty to obtain a conplete
know edge of the total system This is due to the |lack of a common

shared nmenory, a commn physical clock and because of unpredictable
nessage del ay.

Only distributed algorithms will be presented in this paper. The
characteristics and assunptions nade in their design about the
di stributed environment are discussed bel ow.

2.1 The distributed mutual exclusion model.

The effectiveness of an algorithm depends on the suitability of the
nodel as well as the validity of the assunptions made about the
distributed environnment. All the algorithns presented in this paper
share in their design the follow ng assunptions and conditions for the
di stributed environnent:

1. AIl nodes in the system are assigned unique identification
nunbers from1 to N

2. There is only one requesting process executing at each node.
Mut ual exclusion is inplenented at the node |evel.

3. Processes are conpeting for a single resource.

4. At any time, each process initiates at nost one outstandi ng
request for nutual exclusion.

5. AIl the nodes in the systemare fully connected

When reviewing an algorithm attention should be paid to the
assunptions made about the communications network. This is very
I nportant because nodes comruni cate only by exchanging nessages wth
each other. The following aspects about the reliability of the
under | yi ng conmuni cati ons network shoul d be consi der ed.

Message delivery guaranteed. Messages are not lost or altered
and are correctly delivered to their destination in a finite anount
of tine.

Message-order preservation. Messages are delivered in the order
they are sent. There is no nessage overt aking.

Message transfer delays are finite, but unpredictable.
Messages reach their destination in a finite anmount of tinme, but
the time of arrival is variable.

The topology of the network is known. Nodes know the physical
| ayout of all nodes in the system and know the path to reach each
ot her.

Early algorithnms did not consider fault-tol erance issues. An al gorithm
in a distributed conputing system must consider fault-tol erance aspects
to detect and recover from failures. A resilient algorithm takes
advantage of the high availability of the system in a distributed

3

environnment. Even when nodes fail, the rest of the system can still
work, albeit with a degraded performance.

Due to the nature of a distributed environment, many failures can
occur. These can take place either in a channel or in a node, or in
both. The following failures should be considered for an algorithmto
be resilient.

1. Channel failure, supression/shutdown and recovery/insertion.
2. Node failure, supression/shutdown and recovery/insertion.

3. Network partitioning and system reconfiguration.
4

. Conpl ete and partial node failures. Nodes conpletely fail or
behave mal i ci ously.

Recent algorithms incorporate fault-tol erance nechanisns to detect and
recover fromsone failures in the system Another aspect to consider in
an algorithm is the anmount of information that is maintained by each
node in the systemand how it is used. The state information about the
total system can be used to reduce the nessage traffic in the network
and to recover fromfailures.

The performance of the algorithns presented here will be eval uated
using the total nunber of nessages required for a node to enter the
critical section as a criterion. Message traffic should be mnimzed in
order to decrease the overhead in the comunications network. 1In
resilient algorithns, failures in the system need the exchange of nore
i nformation than in normal operation, in order to reconstruct the state
of the systemas it was before the failure. Hence, their performnce
w || be eval uated under normal conditions.

Di stributed nmutual exclusion algorithnms are designed based on two basic
principles [19, 24]: the existence of a token in the system or the
collection of perm ssion fromnodes in the system These two approaches
are described in the follow ng section.

3. BASIC APPROACHES FOR THE DESIGN OF DISTRIBUTED MUTUAL
EXCLUSION ALGORITHMS

Di stributed nmutual exclusion algorithns can be classified into two
groups by a basic principle in their design [19, 24]. These two groups
are token-based al gorithnms and perm ssion-based algorithnms. The basic
principle for the design of a distributed nutual exclusion algorithmis
the way in which the right to enter the critical section is formalized
in the system

3.1 The token-based approach.

In the token-based group the right to enter a critical section is
materialized by a special object, nanely a token. The token is unique

4

in the whole system Processes requesting to enter their critical
section are allowed to do so when they possess the token. The token
gives to a process the privilege of entering the critical section. A
token is a special type of nmessage. The singul ar existence of the token
i nplies the enforcenment of nutual exclusion. Only one process, the one
hol ding the token, is allowed to enter to its critical section. At any
given tinme the token nust be possessed by one process at nost.

Granting the privilege to enter the critical section is perforned by a
single process, which is the current owner of the token. This process
chooses the next token owner and sends it the token.

A distinction has to be nade between the nechanisns used to nove the
token anpbng the processes in the system [19, 23]. If processes are
|l ogically organized in a direct ring structure, the token can travel
around the ring fromprocess to process to give themthe right to enter
the critical section. If a process receives the token and it is
interested in the critical section (CS), it can proceed to its
execution. After the process exits its CS the token is released to
circulate again. On the other hand, if the process is not interested in
iIts CS it just passes the token to the next node in the |ogical ring.
If the ring is unidirectional, starvation freedom is ensured. Under
light load this method has a high cost since the token nmessage
circulates even if no process wants to enter the CS, but it is very
ef fective under high | oad.

Anot her nethod to nove the token in the systemis by asking for it when
a process wants to enter its CS. A requesting process sends a request
nessage to the token holder and waits for the token arrival. After
conpleting the execution of its CS, the process holding the token
chooses a requesting process and sends it the token. If no process
wants to use the token, the token holder does not need to send the
token away. Using this nethod a major concern is how to |locate the
token holder in order to mnimze nessage exchanges originated by a
requesti ng process.

The token-based approach is highly susceptible to the loss of the
token, since this can induce a deadl ock situation. Also, problens can
occur with the existence of duplicated tokens. Conplex token
regeneration nust be executed to ensure the uni queness of the token.

3.2 The permission-based approach.

In the perm ssion-based group the right to enter a critical section is
formalized by receiving permssion froma set of nodes in the system A
process wishing to enter its critical section asks the others to give
it their perm ssion to proceed; and then it waits until these
perm ssions have arrived. A process enters its CS only after receiving
perm ssion fromall nodes in a set.

Non-requesti ng processes send their perm ssion to requesting ones. Each

process nmay grant its permssion to only one process at a tinme. A
priority or an order of events has to be established between conpeting

5

requesting processes so only one of them receives perm ssion from all
other nodes in the set. Only one process, the one that has received
permi ssion from all nenbers of a given set of nodes, is allowed to
enter the critical section. This enforces the requirenent for nutual
excl usi on.

Granting the privilege to enter the critical section is perforned by
the set of nodes that send their permi ssion to requesting processes.
Conflicts are solved by a priority or an order of events nechani sm

The problem of finding a m nimal nunber of nodes from which a process
has to obtain permssion to enter its CS has to be considered. This can
be translated as to how many rights does a process have to collect in
order to proceed to the execution of the critical section. Many
protocol s have been developed to find a majority or quorum of processes
from which rights have to be collected. The solution to this problem
has a direct inpact in the cost of nmessages exchanged per nutual

excl usi on invocation.

4. DESCRIPTION OF TOKEN-BASED ALGORITHMS.

In these algorithnms a special nessage called "token" or "privilege" is
used to pass the right of entering the critical section anong a group
of uncoordi nated, but cooperative processes. The singul ar existence of
the token directly inplies that only a single node is allowed to enter
the critical section. This provides for nutual exclusion access to
shared resources.

Deadl ock occurs if no node is inits critical section and there are two
or nore processes wshing to enter the CS, but they are not able to do
so. This could occur essentially if the token is lost or does not
eventual ly reach a node which has requested it. The |oss of the token
cannot be easily distinguished from system connectivity |oss. The
exi stence of nore than one token would violate the nutual exclusion
requi rement, thus the detection of a token loss is not a trivial task.

All the algorithns presented in this section claim to satisfy the
mut ual excl usion requirenent, be deadl ock free and starvation free.
Sonme of them do not consider fault-tolerance aspects, and sonme neke use
of information about the state of the system or inpose a |ogical
structure to reduce the maxi mal nunber of nessages to be exchanged for
a critical section entry.

Their major characteristics and assunptions will be discussed and the
nunmber of messages exchanged for an entry to the critical section to
take effect will be used as a conplexity measure to conpare them The
first four algorithns described do not consider fault-tol erance aspects
[21, 27, 12, 14]. The next three discuss the effect of failures and
suggest recovery nechanisns that can be incorporated to the algorithm
[6, 16, 24]. The last three algorithms [13, 11, 15], incorporate sone
mechani sns for the recovery from different kinds of failures, the
regeneration of a new token, the elimnation of duplicate tokens, and

the reconstruction of the system after a failure. Al algorithns in
each group are presented in chronol ogi cal order.

Ricart-Agrawala algorithm. In their algorithm [21] each node keeps
a request sequence nunber counter and maintains an array request_data
of size N. This array holds information about the nbst recent request
received fromall other nodes in the system Wen a node wants to enter
its critical section and does not have the token, it increnments its
request sequence number counter and sends a request nessage of the
form REQUEST(ny_sequence_nunber, ny_id), to all other N-1 nodes. It
then waits for the arrival of the token nessage. If it has the token or
the token arrives, it can proceed to enter its critical section.

The token nessage has the form TOKEN(t oken_data) where token_data is an
array of size N token_data[j] contains j's request sequence nunber
granted nost recently. Wen node i leaves its critical section, it
updates token_data[i] with its sequence nunber to indicate that its
current request has been granted. Next, it searches a |ogical circular
list for the first node whose | ast request has not been granted yet and
sends it the token. If no node has sent a request, node i retains the
i dl e token. A node holding an idle token can enter its critical section
wi t hout the need to send a request nessage.

Wien a node k receives a request nessage froma node j, it updates its
request data[j] with the nost current request sequence nunber received
from j that k knows of. This update takes care of out-of-order request
nessages and old requests already granted. If node k is holding the
token and is not in its critical section, then k sends the token to
node j.

The al gorithm requires N nmessages exchanges for each critical section
entry, or O nessages if the requesting node is holding an idle token.
The token noves in a logical circular ring of nodes ordered by their
uni que identification nunber. Therefore, a first-come-first-served
service is not guaranteed. The al gorithm assunmes nodes do not fail and
the existence of a fully reliable conmunications network. Transfer
delays are finite, but unpredictable, and nessage-order preservation is
not required.

Suzuki-Kazami algorithm. Suzuki and Kazam devel oped an al gorithm
[27] simlar to the Ricart and Agrawal a al gorithm[21] presented above.
Each node maintains an array of size N to store the sequence nunber of
the nost recent token invocation from all nodes in the system When
node i wishes to enter its critical section and does not hold the
token, it increnents its request counter RN i] and sends a request
nmessage of the form REQUEST(i, RN[i]), to all other N1 nodes. It then
waits for the arrival of the token nessage. If it has the token or the
token arrives, it proceeds to enter its critical section.

The token message has the form PRIVILEGE(Q LN) where Qis a queue of
requesting nodes and LN is an array of size N which contains the

sequence nunber of the request granted nost recently to each node.

After exiting its critical section, node i updates LN i] with its
current request granted RN[i]. Next, it enqueues all nodes not in Q
from whom it has received a request which has not been granted yet.
Nodes are inserted at the rear of the queue in an ascendi ng node nunber
order. If there exists a process in Q the token is sent to the process
at the front of it. If Qis enpty, node i retains the idle token. A
node holding an idle token can enter its critical section wthout the
need to send a request nessage.

When a request from node j arrives, RN j] is updated with the nost
current request nunber ever received fromit in order to discard out-
dated information. This would take care of old requests already granted
and out-of-order request nessages. |If node i is holding the token, not
requesting its critical section and the nost current request from j has
not been served yet, then the token is sent to node j.

The algorithm requires N nessages exchanges for each nutual excl usion
I nvocation or 0O nessages if the requesting node is holding an idle
token. It is assumed that transfer delays are finite, but
unpr edi ct abl e. Message-order preservation is not required.

The al gorithm has only two procedures (see appendix A), Pl and P2; only
P2 is executed indivisibly. In procedure P1, if Q is enpty and a
request nessage arrives after line 20 and exactly before line 21 and
procedure P2 is called, it could happen that this request would starve
for some tine (at least, until another node originates a request).

Sequence nunbers are unbounded, but the algorithm can be nodified in
order to bound them The nodified algorithm requires L*N + (N-1)
nessage exchages for L nutual exclusion entries, where L is a fixed
I nteger greater than or equal to 2.

Mizuno-Neilsen-Rao. In their algorithm [12], M zuno et al.
I ncor porate quorum agreenents to form groups of nodes in the system and
adopt the nechanism to nove the token used in Suzuki and Kazam's
al gorithm/[27].

A quorum agreenent (Q Q1), is a pair of sets which contain subsets of
all nodes in the system and where every nenber of Q intersects with

every nenber of Q1. A quorum agreenent data structure is used to
reduce the nunmber of nessages exchanged to perform an entry to the
critical section.

Each node in the systemis a nmenber of at |least one set in Q and a
menber of many sets in Q1. For a node i, quorums fromQ are called the
request set R, and quoruns from Q1 are called the acquired set A .
The condition, R intersection AZ <> 0 holds. This neans that R and A

are related by at |east one nmenmber comon to both sets. Messages are
exchanged through this relation-link, or internediate node, between

8

bot h sets.

Basically, the nmechanism for locating the token is as follows. Wen
node i wants to enter its critical section and does not hold the token,
it sends request nessages, which contain its new sequence nunber RN,
only to all other menbers of R . The best case is when another nenber
of R is holding the token, then the process of locating the token
ends. Suppose that this is not the case; then each of the other nodes j
in R are also nenbers of at |east one set A.. This neans that at this

poi nt one menber in all acquired sets in the system know of the request
fromnode i and have updated their RN array.

One node in a set A is holding the token (unless the token is
traveling in the system but this condition will be nmet in a finite
amount of tinme) and this node j is not a nmenber of R. Node j has sent
an ACQUI RED(j, LM) nmessage to all other nodes in ﬁ. Thi s nmessage
i ndicates that j has received the token. Upon receiving the acquired
message from j, all other nodes k in A check if they have requests
t hat have not been granted yet. One of these k nodes is the relation-
link (or internediate node) to R, so it confirnms it has an outstanding

request from i and sends a REQUEST(RN,) to node j. The request contains
the whol e RN array because there could exist many pendi ng requests.

The token hol der now knows of the request from node i. It updates its
RN array and the LN array in the token, and enqueues i's request in the
token's queue. Requests are enqueued in an ascendi ng node nunber order.
After node j |leaves the critical section, the token is sent to the next
node in the token's queue. If the queue is enpty, node j holds the idle
t oken.

The performance of the algorithm in terms of the nunmber of nessages
exchanged for an entry to the critical section, depends upon the
underlying quorum agreenent. If it is based on the binary tree
protocol, the upper bound is in the order of nagnitude of log N The
upper bound using quorum agreenents based on finite projective planes
is approximately 3 * SQRT(N). A nodified grid-set protocol may be used
to generate the quorum agreenents and the upper bound in this case
would be (2 * SQRT(2) * SQRT(N) - 2). The algorithm from Suzuki and
Kazam is a special case of this algorithmif all nodes except i are in
R and i is the only node in A.

Neilsen-Mizuno algorithm. Neilsen and M zuno inpose a static
| ogi cal structure on the comruni cati ons network. Nodes are arranged in
a directed acyclic graph and communicate only with their neighbors
[14]. A node or a token does not need to nmintain a queue of pending
requests. This queue is inplicity nmaintained by the state of each node
in the system

Each node holds two integer variables, LAST and NEXT, and a bool ean
vari abl e HOLDI NG. LAST indicates the |ast neighbor node from which a

9

request was received, either on its behalf or on one of its neighbors’
behalf. If this node is the origin of the request, then LAST = 0. The
vari abl e NEXT indicates the node which will be granted the token after
this node makes use of it (the next node in the inplicit queue of
pendi ng requests in the systen).

When a node j wants to enter its critical section (CS) and does not
hold the token, it sends a request of the form REQUEST(ny_id, origin)
to LAST. In this case nmy_id = origin = j. Node j sets LAST : =0,
becom ng a sink node, and waits for the token to arrive. |If node j
receives a request fromnode k at this point, it sets NEXTj::origin and
LAST. : =k. Node j has beconme an internediate node in the path al ong
mhicﬁ a request nessage travels.

If an internedi ate node j receives a REQUEST(y, origin) from a neighbor
node y, it will forward a REQUEST(j, origin) to LASTj, on behal f of its

nei ghbor. It wll then add y to the path by setting LASTj:=y. The

request nessage will travel along the path until it arrives to the sink
node. The request fromthe origin node will be "enqueued". The origin
node will becone the sink node and the last in the path (LASTmﬁgin::
0).

When j receives the token, it can enter its CS. After exiting it, if
there is a pending request (NEXTj > 0), the token is sent to NEXTj and

NEXT.:=0. If there were no pending requests, node j keeps the idle

t oken. A node holding an idle token does not need to send a request to
enter its critical section again.

The queue of pending requests can be deduced by follow ng the state of
NEXT in each node, starting at the node holding the token. The
al gorithm does not need sequence nunbers and requires very sinple data
structures. Messages are very snall, reducing the overhead in the
communi cations network, which it is assunmed to be reliable. The tota
nunber of nessages exchanged per critical section entry depends on the
topol ogy of the l|ogical structure, but has an upper bound equal to
(D+1), where D is the length of the |longest path in the network; the
di ameter of the network. In a star topol ogy the upper bound is 3. For a
| i near topol ogy, the upper bound is N

Helary-Plouzeau-Raynal algorithm. In their algorithm [6], a
process wanting to enter its critical section and not possessing the
token sends a request only to its neighbors and waits for the token. If
it holds the token or the token arrives, it can proceed to execute the
critical section. After conpleting the execution of its critical
section, the node calls a procedure for transmting the token.

A request nessage contains the identification of the node originating
the request, the request tinme based on a logical clock follow ng
Lamport's rules [8], the identification of the node forwarding the
request, and a set of nodes for which a request has already been sent.

10

Requests are propagated in the network based on a know edge-transfer
control nethod. A node receiving a request knows who originated it,
whi ch nei ghbor forwarded it, and finds out to which of its own
nei ghbors the request has not been sent yet. Next, it propagates the
request only to those neighbors. A return path to the requesting node
is constructed with the identification of the nodes that have
propagated the request. Wen the node holding the token has conpleted
the execution of its critical section it can send the token directly to
the requesting node follow ng the return path.

Upon receiving a request fromits nei ghbor node j, node i updates out-
dated information that it maintains for j. This would take care of out-
of -order nessages from node j and of deleting requests already granted
to j. The request is added to i's set of known pending requests. Node i
synchroni zes its logical clock, finds out the set of neighbors to which
it will propagate the request, adds itself to the return path, and
propagates the request. If node i is holding an idle token, then it
calls a procedure for transmting the token.

In the procedure for transmting the token, node i finds the ol dest
request fromits own set of pending ones, updates the tinme of that
request in the token's array with its logical clock, and sends the
t oken through the return path.

When a node k receives the token nmessage and the token final
destination node is not itself, it checks the return path and forwards
the token to its neighbor followng the return path. If the token is
addressed to k, then it can proceed to enter its critical section.

The algorithm assunes the existence of a reliable communications
network and finite but unpredictable transfer delays. The algorithm
does not require nessage-order preservation. Nodes need not to have any
pri or know edge of the network topol ogy. The only know edge owned by a
node is the nane of its neighbors. The nunber of nessages sent to
| ocate the token is reduced by using a flooding broadcast technique and
a know edge-transfer control technique. The nunber of nessages required
per critical section entry depends on the actual network topol ogy.

What ever topology is considered, if the requesting node owns the token
there is no need to send any request nessages. For a linear topol ogy,

the total nunber bounds are N and 2(N-1). The total nunber of nessages
varies fromNto 2Nin a ring topology. In a conplete network the total

nmessage nunmber is N Requests are fully ordered by the use of |ogica

clocks and are granted in a first-cone-first-served manner.

Raymond's algorithm. In Raynond's algorithm [16] a static |ogical
tree structure is used. Nodes are arranged in an unrooted tree
structure and comunicate only with their neighbors. Each node holds
information pertaining to its own neighbors only. The | ocation of the
token is relative to those neighbors. A node, say A, holding the token
becones the privil eged node and its nei ghbors, say B, ¢, and D, know A
hol ds the token. Neighbors of D, say E and F, do not know that A is
hol di ng the token. They only know that D represents the relative

11

| ocati on of the token.

If node E wants to enter its critical section, it needs to send a
request to D after placing itself inits own request queue. Node D adds
E's request in its request queue and sends a request to A on its own
behal f. Suppose now that node D receives a request fromits nei ghbor
node F, it enqueues F's request, but it does not send another request
to A since it has already done so. Furthernore, node D now wants to
enter its critical section, so it enqueues its own request in its
request queue, but it does not send a request to A since it has
al ready done it.

Node A receives only one request from node D. It enqueues D's request
on its request queue. After conpleting the execution of its critica

section, A sends the token to the first node in its queue, say D, and
| earns that node D will now be the relative |l ocation of the token. If A
di scovers that there are still nodes enqueued in its request queue, or
if A wants to enter its critical section again, it sends a request to
node D.

When node D receives the token, it finds that node E's request is the
ol dest one in its request queue. It sends the token to E, and |earns
that the relative location of the token is now node E. It also
di scovers that its request queue is not enpty (F's request and D's own
request are enqueued) and sends a request nessage to E (the relative
| ocation of the token).

Upon receiving the token, node E finds its own request as the oldest in
the queue. When it receives the request fromnode D, it adds it to its
gueue of pending requests. Wen it releases the critical section, finds
the oldest request in its queue, D's request in this case; sends the
token to D and learns that the relative |location of the token is now
node D.

Node D receives the token and finds that the ol dest request is from
node F. It sends the token to F and learns that the relative |ocation
of the token is node F. Since its queue is not enpty, it sends a
request to F. And the process continues.

If for node D the relative location of the token is node F, this could
be seen as a directed edge D->F. As the token travels along the
unrooted tree, the direction of the edges changes. At one point, the
edges in the system would represent a directed acyclic graph, and a
single directed path could be deduced from each node to the token
hol der.

The al gorithm assunes a reliable conmunications network and finite but
unpredi ctable transfer delays. It does not require nmessage order
preservation. Messages do not need sequence nunbers to enforce the
order of events and requests are granted in a first-come-first-served
manner. The total nunber of nessages exchanged for an entry to a
critical section is typically in the order of magnitude of log N A
pi ggyback strategy could be used to reduce the nunber of nessages. A

12

recovery procedure fromthe failure of a node is presented and it could
be incorporated to the algorithm The system can recover froma failed
node, providing that not all of its neighbors also fail. Neverthel ess,
it cannot recover fromthe failure of the node holding the token and
all of its neighbors.

Singhal's algorithm. In his algorithm [24], each node maintains
i nformati on about the state of the system This information is
dissemnated inplicitly within request and token nessages. Wenever a
node wants to enter its critical section, it uses a heuristic to deduce
fromits available state information what nodes are probably hol ding
the token and sends a request only to those, rather than to all other
nodes in the system The heuristic is used in order to mnimze the
nunber of nessages sent to | ocate the token.

Each node uses a |ocal sequence nunber counter to keep track of its
| ast request invocation. Two vectors are used by each node to store the
I nformati on about the state of the system The state vector stores the
| at est known states of all sites. The possible states are: requesting,
not requesting, executing its crital section, and holding an idle
token. The other vector indicates the |atest known request invocation
for each site. The token nessage also contains two vectors, one for
storing the state of each site and the other one for storing sequence
nunbers for each node.

When a process i wants to enter its critical section and is not
hol ding the token, it increnents its sequence nunber counter and sends
a request nessage of the formrequest(i, SN[i]), where SN i] indicates
its latest request. Node i uses the state information it has about the
system and sends a request to only those nodes which are in the
"requesting" state. One of this nodes is likely to know the | ocation of
the token, or the token will be granted to it in a finite anmount of
time. After sending its request nessage, node i waits for the arriva

of the token. If node i is holding the token or the token arrives, it
can proceed to execute its critical section

When node j receives a request from i, it checks the request sequence
nunmber against its sequence nunber vector to discard out-dated
requests. If the request is a new one fromnode i, then it verifies the
information in its state vector to update i's state. If node j is
requesting and the state information for i, before the update, was not
"requesting,"” then j sends a request nessage to i because it becane one
of the nodes that probably know the | ocation of the token. If node j is
hol ding an idle token, then it sends the token to i.

When a node conpletes the execution of its critical section, it
conpares the information of its own state vectors against the vectors
in the token, and updates all vectors with the nost current information
about the state of each node. The update rule is such that if the
vectors in the token hold out-dated information, these are updated with
the information contained in the node's state vectors, and vice versa.
After the state information has been updated, the node uses arbitration

13

rules to determ ne which requesting node should get the token. The
token will be granted to the nearest requesting node with the |owest
sequence nunber. Nodes are ordered in an unidirectional |ogical ring by
their unique number identification. This rule guarantees that nodes
whi ch have executed their critical section least frequently will get
the token, and prevents a node from obtaining the token twi ce while
sonme other node is waiting for it.

The al gorithm assunes that nessage propagation delay is finite, but
unpredi ctable. The nunber of nessages exchanged for an entry to a
critical sectionis (N+1)/2 in case of light traffic, and Nin the case
of heavy traffic. In light traffic a node holding an idle token does
not need to send a request nessage if it wants to enter its critical
section. Singhal discusses the inpact of node and communication |ink
failures, and presents recovery procedures that could be incorporated
into the algorithm

Naimi-Trehel algorithm. In their algorithm [13] an underlying
dynam c logical structure is used on the commnications network.
Requesting processes are l|logically arranged, by their requests, as a
rooted tree. As a request fromnode i travels along the path from node
i to the root node, node i becones the new parent of each node on the
pat h, except for itself. Thus, node i becones the new root node of the
tree.

Nei t her the nodes nor the token needs to maintain a queue of pending
requests. This queue is inplicity maintained by the state of each node
in the system Each node keeps two integer variables, LAST and NEXT.
The former indicates the |ast node from which a request was received
and the nei ghbor node in the path to the root to whom this node wll
send a request nessage the next tinme it wants to enter its critical
section. NEXT indicates the node to whom the token will be granted
after this node leaves its critical section.

Wen a node i wants to enter its critical section (CS) and LAST;, <> i
(node i is not holding the token), it sends a request to node LAST;, it
sets LAST;:=i, and waits for the token to arrive. If it has the token
or the token arrives, it enters its CS directly.

When the request fromnode i arrives at a non-privileged node j in the
path to the token holder node (the privileged node), node j forwards
the request from i to node LAST,. Node j sets LAST :=i. Wen the
request from node i arrives at the privileged node, say node k, and k
is the root node of the tree (LAST, :=k) and it is in its critical

section, then node k sets NEXT,:=i and LAST.:.=i. If k is the root node
and is holding an idle token, then it sends the token to node i and
sets LAST :=i. In the case that node k is not the root node, it

forwards the request fromnode i to node LAST,. The |atter happens when

node k received a request from another node prior to the request from
node i and thus it becanme part of the path form node i to the root

14

node.

When a privil eged node k holding the token | eaves the critical section,
it sends the token to node NEXT, and sets NEXT, :=0. If there were no

pendi ng requests (NEXT.:=0), the node keeps the idle token.

The queue of pending requests can be deduced by follow ng the path of
the NEXT state in each node. The head of the queue is the privileged
node. The token nobves sequentially traversing this path in the tree.
The algorithm does not require sequence nunbers for ordering the
events. Messages are very smmll since very sinple variables are
transmtted. This reduces the overhead in the network.

The average nunber of nessages exchanged for an entry to the critica
section is in the order of log N A node holding an idle token does not
need to send a request to enter its critical section again.

The al gorithm assunes the existence of a fully reliable conmunications
network. Transm ssion delays are finite and nessages need not be
delivered in the order they are sent. The algorithm incorporates a
mechani sm for the detection of and recovery of the system from node
failures. The nmechanism is based on the use of two delays, one
I ndi cates a presunption of failure (Twait) and the other permts the
broadcast of a question and the reception of the answers (Telec). Each
node is in one of 5 possible states: waiting, consulting, query,
candi date or observer

Wien a node i sends a request nessage, it enters a waiting state. If it
does not receive the token within Twait, there is a presunption of
failure. If a failure has occured, node i consults if any node k has
record of its request and NEXT, =i. After Telec has tinmeout, it queries

the other nodes to detect if the token is present in the system When
this Tel ec expires, node i becones a candidate to regenerate the token,
broadcasts an election nmessage and activates another Telec. When
several other are candidates in the sane Telec interval, the one with
the small est node nunber will be elected. Al other nodes in the system
beconme observers and wait for a "candi date_el ected" nessage from the
el ected node to resune operations. The el ected node possesses the new
t oken and becones the root of the reorganized tree. Al nodes set their
LAST to be the el ected node nunber and NEXT is set to O.

During the interval delays at the consulting and query phases, the
t oken or an answer from another node may arrive, and the inquiring node
goes back to the waiting state. Queries for the presence of the token
in the systemare recorded by the nodes for the case in which the token
is travelling. The algorithm assumes that when a node fails, it
continues to fail during the election process. It does not consider
what happens when a failed node recovers and is incorporated to the
system This node may be holding an old token. Failures in the
comuni cati ons network are not considered in the algorithm

15

Mishra-Srimani. M shra and Srimani extended the algorithm of Suzuki
and Kazam [27] and incorporated a fault tol erance nechanismto recover
the system from a single node failure [11]. A lost token can be
regenerated and the state of each site can be reconstructed. The
al gorithmensures the elimnation of duplicated tokens in the system

Fault tolerance is inplemented using a tinme-out mechanism Wen
process j wants to enter its critical section it sets a tinme-out after
sending its request to all other nodes. The al gorithm behaves very nuch
the sane as the original [27] under the condition that no node fails
and the requesting process receives the token within the tine-out.

When the token does not arrive within the time-out, process j checks if
anot her node has started the regeneration of the token. If that is the
case, j waits for a nessage indicating it can reset its tinme-out and
wait for the token again. When no other node has started the
regeneration procedure, j conmences it. It sends a PRI VILEGE CHECK(j)
message to all nodes and waits for their response. |If a response
indicates that the token is not lost, then j sends a nessage to al
other nodes indicating that it was a false alarm and waits again for
another time-out for the token to arrive.

If a node k receives a PRIVILEGE CHECK(j) nessage, it either sends a
REP_CRI TI CAL(k) nessage to j if k has the token, or sends a NO _CRI T(Kk)
message to node j if it has not started a token regeneration procedure.
If node k already started to regenerate the token when a
PRI VI LEGE_CHECK(j) nessage arrives, if 3j's node nunber is |ess than
k's, then node k stops the generation procedure. O herw se, k ignores
t he nessage.

A process k that has started the regeneration of the token will know
that the token is lost and that no other node is trying to regenerate
it, when it receives no REP_CRITICAL nessages and N-2 NO CRI T nessages
(at nost one node could have failed and did not respond). It then sends
CREATE_PRI VI LEGE(k) nessages to all correct nodes and gets an UPDATE
nmessage from each one of them This nessage contains enough information
to construct the state of the token's queue of pending requests. Node k
sends nessages to all nodes indicating the recovery of the system and
starts executing its critical section.

The al gorithm assunmes that transfer delays are finite but unpredictable
and that nessages might not arrive in the order they are sent. The
total nunber of messages exchanged for a critical section entry is
L*N+(N-1) under the absence of failures.

A second algorithmis presented in which a central coordination contro
for nmutual exclusion is noved anobng the nodes in the system At any
given time, there exists only one central coordinator in the system

Nishio-Li-Manning algorithm. Their algorithm [15] is an extension
of the Suzuki and Kazam algorithm[27], but the novenent of the token
is different. The token is granted to the nearest node, in a |ogical

16

circular list, whose |last request has not been granted yet, as in [21].

Faul t-tol erance, based on tine-out values, is incorporated in their
algorithm It is assunmed that each node in the system consists of a
processor and a comrunication controller. The algorithm can recover
from processor failures, controller failures and conmunication |ink
failures. A lost token can be regenerated and duplicated tokens are
elimnated fromthe system

The controller of each node k nmnages nessage exchanges w th other
nodes, controls processor k's right to enter its critical section, and
Is able to regenerate a new token if need be. Therefore, state arrays
are stored in the controller's nmenory. Processor and controller
I nteract, exchanging information. Based on that information, the
controller can decide to regenerate a new token or elimnate a
dupl i cated one.

Request nessages include the identification of each node to which it is
being sent. A field indicating the age of the token is added to the
t oken nmessage. Each node keeps the age of the npbst current uni que token
generated in the system Wen a process i has sent a request to all
other N-1 nodes in the system it sets a tine-out for the token to
arrive. If the token arrives within this tinme and its age is not ol der
or equal to the age value at site i, then it is a duplicated token and
I's discarded. The process re-sends its request to all other nodes and
the sanme procedure is repeated. If the age of the token is at | east
equal to the age value at site i, the age value of i is updated and it
can proceed to enter into its critical section.

If the token did not arrive within the tinme-out, the token regeneration
procedure commences. A TOKEN M SSI NG nessage is sent to all other
nodes. If one of them does not respond, the procedure starts again. If
all other N-1 nodes responded with an ACK nessage, a new token is
regenerated and an increnmented age is given to it. The process now can
proceed to the execution of its critical section. In the case that a
singl e node replied with a NACK nessage, the procedure re-starts at the
poi nt where node i sends again its request to all other nodes.

The TOKEN-M SSI NG nessage includes an increnented proposed age field
from node i. ACK and NACK nessages also include an age value that
corresponds to the proposed age in the TOKEN-M SSI NG nessage, in the
case of ACK nessages, or is different, in the case of NACK nessages.
NACK nessages help in resolving conflicts anbng processes that started
the regeneration of a new token, or to indicate that the token has not
been lost. The node with the highest proposed age is candidate to
regenerate the new token. A node k is allowed to regenerate a new token
only if it has received ACK messages, corresponding to its
TOKEN_M SSI NG enquiry, fromall other N-1 nodes. ACK nmessages contain
j's nost current request granted; therefore, the array of nost recently
requests granted can be constructed in the new token.

The information stored at the controller is assuned not to be lost in
case the controller fails. Since this is difficult to keep and m ght

17

not be recoverable in a catastrophic controller failure, a mechanism
that uses information propagation is described for the recovery from
t hese failures.

The algorithm assunes finite transfer delays and does not require
message- order preservation. The nunber of nessages exchanged for a
critical section entry is N. The resiliency nmechani sm presented can be
easily nodified to include the recovery from a node insertion, or
renoval . Channel insertion/renoval can be treated in the sane way as
their failure/recovery.

4.1 Recapitulation of the performance of token-based
algorithms.

Table 1 bel ow shows the performance of the al gorithns descri bed above.
The colum in the center indicates the total nunmber of nessages
required for an entry to the critical section to take effect.

ALGORI THM TOTAL MESSAGES OBSERVATI ONS
Ri cart-Agrawal a [21] N
Suzuki - Kazam [27] N L* N+ (N- 1) for bounded sequence nunbers.
M zuno- Nei | sen-Rao [12]

bi nary tree protocol avg log N Uses quorum agreenents.

finite proj. planes 3 * SQRT(N)

Nei | sen-M zuno [14] D
Ii near topol ogy N
star topol ogy 3

+1 Uses a Direct Acyclic G aph.

Hel ary- Pl ozeau- Raynal [6] Di scusses the effect of failures and presents
tree topl ogy N to (N-1+D) suggestions for the recovery.
l'i near topol ogy N to 2(N-1) Uses a know edge-transfer control technique.
ring topol ogy N to 2N
conpl ete topol ogy N
Raynond [16] 2*D Di scusses the effect of failures and gives
avg log N suggestions for the recovery. Uses a static

| ogical tree structure.

Si nghal [24] N Di scusses the effect of failures and gives
suggestions for the recovery. Uses state
information and heuristics.

Nai m - Trehel [13] avg log N Considers node failures, and the token
regeneration. The state is not reconstructed.
Uses a dynamic |ogical structure.

M shra-Srimani [11] L*N+(N-1) Consi ders node failures, the regeneration of
the token and the elimnation of duplicated
tokens. The system state is reconstructed.

Ni shio [15] N Consi ders processor, conmunications
controler and communication link failures.
The regeneration of a token and the
elimnation of duplicated tokens. The system
state is reconstructed.

N = the nunber of nodes in the system

D = the dianmeter of the network (the |ongest path).

L = an integer value >2, used to bound sequence nunbers.
avg = average.

Table 1. Performance of token-based al gorithns
18

A drawback of the algorithns that use sequence nunmbers to order the
events in the system is that the sequence nunbers are not bounded.
Suzuki and Kazam [27] proposed a way to bound them but this
increments the total nunber of nessages in their algorithmto L*N + (N
1) for L mutual exclusion invocations by a single node.

The algorithms that incorporate fault-tol erance aspects base their
detecti on nechanisms on the use of timeouts. The resilient algorithnms
shown in Table 1 exhibit the performance indicated, under no failures
conditions and the reception of nmessages within the required tineouts.
It is difficult to analyze their performance under failure conditions
because of the probability that a failure wll occur, the inherent
delays in the transm ssion of nmessages and the appropriateness of the
size of the tinmeouts chosen.

In the follow ng section, a description of various perm ssion-based
algorithnms is given

5.- DESCRIPTION OF PERMISSION-BASED ALGORITHMS.

In these algorithns, requesting processes wait to obtain perm ssion
from a set of processes in the system Once a process obtains
perm ssion froma sufficient nunber of nenmbers in a set, it is allowed
to enter the critical section (CS). Only one process at a tinme can get
enough rights to execute its CS. Each node grants its perm ssion to
only one node at a tine. This ensures the condition for nutual
excl usi on.

Two inter-rel ated aspects are considered in these algorithns to reduce
t he nunber of nessages exchanged for an entry to the CS to take effect.
The number of "enough"” rights that should be collected, and which nodes
shoul d grant those rights. Some algorithms require that a node should
obtain permssion fromall nodes in the system In other algorithns,
nodes are divided into groups that intersect with each other in a non-
nul | pairwi se manner. Any possible group nmust have one node in common
with any other group to ensure nutual exclusion. A node needs to obtain
perm ssion only fromall the other nenbers in its group.

Thomas [28] used a voting technique based on a nmmjority consensus
algorithm that requires a requesting node to obtain perm ssion from
only a mjority (N+1)/2 of nodes. The intersection of any two
majorities has at | east one node in conmon. This neans that for any two
requests that are received, at |east one node grants its perm ssion to
one of them and defers it to the other. Agrawal and El Abbadi [1]
called this consensus the majority quorum

The concept of obtaining perm ssion froma group of nodes, which are
not necessarily a mpjority, was formalized by G fford [5]. He
i ntroduced the notion of quorums, which are nonenpty sets of nodes.
Garci a-Mlina and Barbara [4] introduced the notion of coteries. A
coterie is a nonenpty set of quoruns in which any two quoruns nust have

19

at | east one conmmon node (intersection property), and no quorumis a
subset of any other one (mnimality property).

Agrawal and El Abbadi [1] discuss different protocols to construct
gquorums. The wunstructured quorum protocol can be used to derive
maj ority quorums. The grid protocol is used to forma square grid of
guoruns as the ones described in Maekawa's algorithm[9]. In the tree
protocol, nodes are logically organized to forma conplete binary tree,
and tree quoruns can be derived fromthis structure.

All the algorithnms presented in this section claim to satisfy the
mut ual excl usion requirenent, be deadl ock free and starvation free. The
first four algorithnms [8, 20, 3, 18] described below, require a node to
obtain permssion fromall other nodes. The next three algorithns [9,
22, 2] inpose a logical structure on the system to group nodes into
sets, and require a node to obtain perm ssion only from the other
menbers in its set. In the last algorithm [25], a dynam c information
structure is used to form quoruns. Algorithms in each group are
presented in chronol ogi cal order.

Lamport's algorithm. In [8] Lanport describes a nechanism based on
| ogi cal clocks for the total ordering of requests in the system A
timestanp is associated to each request and the order anong themis
guaranteed by the following two rules. (a) Each process Pi increnments
its logical clock C between any two succesive events. (b) Each nessage
m from process Pi contains a tinmestanp TneCi(a), where a is the event
of sending the nessage. Wen process Pj receives a nessage m, it sets
G greater than or equal to its present value and greater than Tm This
ensures that if a is the sending of a nessage by process Pi and b is
the recei pt of that nessage by process Pj, then G (a) < G(b).

Each process nmmintains its own request queue. A requesting process
sends a tinestanped request to all other N-1 processes and can enter
its critical section when perm ssion from all other processes is
received, and its request is next in its ordered request queue. This
ensures the nutual exclusion condition. A process that receives a
request nmessage sends back a tinmestanped reply nessage to the
requesting process. \When a process releases its critical section it
sends a release nessage to every other process to notify that its
request has been granted. Each process in the system receiving a
rel ease nmessage updates its queue of pending requests and checks if it
can proceed to enter its critical section.

When a process i wants to enter its critical section it sends a request
nmessage of the form REQUEST(Tm i) to all other N-1 nodes and puts that
message in its request queue. \Wen process j receives the request from
node i, it places it in its request queue, updates its C and sends a
ti mestanped reply nmessage to i. When process i receives reply nessages
from all N-1 other processes with a timestanp greater than the
timestanp in its request nessage, and its request is next in its queue,

then it can enter its critical section. When i releases its critica

section, it deletes any request (Tm i) from its request queue and

20

sends a tinestanped release nessage to all other processes. Wen
process j receives a release nessage from i, it deletes any request
nmessage (Tm i) fromits request queue.

Requests are served in a first-come-first-served manner. The al gorithm
assunes the comunications network is fully reliable. Message-order
preservation is required and the total nunber of nessages exchanged for
an entry to a critical sectionis 3 * (N1).

Ricart-Agrawala algorithm. In their algorithm [20] a node has to
receive permssion fromall other N-1 nodes in the systemto enter its
critical section (CS). A node wishing to execute its CS sends a reqguest
nmessage to every other node and waits for their perm ssion to arrive.
When a node receives a request, it sends its permssion to the
requesting node if either it is not requesting itself or it is
requesting itself, but the other node's request precedes its own. The
sending of its permssion is deferred otherw se. Requests are ordered
by using sequence nunbers in the system

When node i is going to send a request nessage to all other nodes, it
i ncrenments the highest sequence nunber it has know edge of and i ncl udes
it inits request nessage. After regquest nessages are transmtted, node
i waits for the arrival of N1 reply nessages to enter its CS. Wen
process j receives the request from node i, it sends back its
permssion if it is not requesting the CS itself, and updates its
hi ghest sequence nunber value. If node j is requesting to enter its CS
and the sequence nunber in the request fromi is |lower than the one in
its own request, then j sends its permssion to i. If j is requesting
and its request sequence nunber is lower, then it defers a response to
i and keeps record of it in its Reply Deferred[i] array. Ties are
solved by granting the permission to the node with the |owest node
nunmber. When a node releases its CS, it sends its permssion to all
nodes for which a reply to their requests was deferred.

The algorithmrequires 2 * (N-1) nessages for an entry to the CS to
take effect. It assunes the existence of an error-free underlying
conmuni cati ons network. Message transfer delays are finite, but
unpredi ctabl e, and nmessage-order preservation is not required. Requests
are serviced in a first-cone-first-served manner

Carvalho-Roucairol algorithm. Their algorithm [3] is a variation of
the Ricart and Agrawala algorithm [20]. Once a node i has received
perm ssion froma node, it can keep it for future use until a request
is received from that node. The next time node i wants to enter its
critical section (CS), it will send request nessages only to those
ot her nodes whose pernmission is not already kept by i. This indefinite
perm ssion reduces the nunber of nessages substantially when only a few
nodes are frequently invoking rmutual exclusion.

When node k grants its permission to node i, its authorization remnains
valid until it wishes to enter its CS again and sends a request nessage

21

to i. When node i wants to enter its CS, it increnments the highest
sequence nunber it has know edge of and sends a request nessage of the
f orm REQUEST(nmy_sequence_nunber, i) to only the other nodes which need
to be consulted. Then, node i waits for those reply nessages to arrive
to execute its CS.

VWhen node j receives the request from i, it wupdates its highest
sequence nunber known and sends its permission to node i if either it
Is not in its CS or requesting it, or is requesting the CS, but the
request sequence nunber fromi is lower than its own. Node j records in
its array[i] that node's i permi ssion is no longer valid. If node j is
either in its CS, or is requesting it and its request is |ower than
that from i, then the sending of the perm ssion is deferred. There is
one special case in which node j is requesting the CS, the perm ssion
fromnode i is still valid, but the new request from i contains a | ower
sequence nunber than its request. Node j records in its array[i] that
node's i permi ssion is no longer valid, sends its permssion to i, and
sends a request nmessage to it.

Wien a node releases the CS, it sends its permssion to all nodes for
which a reply to their requests was deferred, and updates its array of
valid perm ssion. The last node entering its CS can reenter it if no
ot her node requests it.

The algorithmrequires fromO to 2 * (N-1) nessages for an entry to the
CS to take effect. It assumes there is a reliable underlying
communi cati ons network. Message transfer delays are finite, but
unpredi ct abl e, and nessage-order preservation is not required.

Raynal's algorithm. Raynal introduces the use of prinme nunbers for
describing the global state of the system In his algorithm [18],
prime nunbers are used to order the events in the system Hs aimis
not to obtain an efficient algorithmfroma nunber of nessages point of
view, but to show that prime nunbers and their properties can be a
useful tool in the design of distributed al gorithmns.

Each node i is endowed with a different attribute Ai. These attributes
are natural integers, different from 1, and pairwi se prinme. Each node
mai ntains a variable Xi initialized to Al except for one Xk initialized
to 1. They also know that Qis the total product of all prinme nunbers
Ai. Wien a node i wants to enter its critical section (CS), it sends a
request nessage of the form REQUEST(i) to all other N-1 nodes and waits
to receive a reply nessage from all other nodes. Reply nessages have
the form REPLY(j, Xj). Wen all replies have arrived, node i conputes
T, the total product of all values Xj received. If T equals QAi, then
node i can proceed to enter its CS. O herwise, it waits for a tine and
t hen re-sends request nmessages to all other nodes. Wen node i rel eases
the CS, it updates its variable Xi to (Xi * AI/Aj), where j = (i + 1)
nmod N. The permission to enter the CS rotates around a |ogical ring of
nodes.

22

A node updates its variable Xi only after it makes use of the CS. The
effect of this update is that i |oses the perm ssion and the next node
in the circular ring obtains the perm ssion. The algorithm can suffer
from deadlock if the next node in the logical ring does not want to
enter the CS; it never updates its variable Xj. Therefore, it never
gives the privilege to another node.

The algorithm assunes the existence of a reliable communications
networ k. Transm ssion del ays are unpredictable, but finite, and nessage
order preservation is not required. The nunber of nessages exchanged

has an upper bound of 2(N-1)2.

W propose a nodification to the algorithmto avoid deadl ock situations
and reduce the nunmber of nmessages exchanged. At initialization, each
node knows the value of all Xi, and the node endowed with the value
Xi=1 has the perm ssion to enter the CS, the sane as in the original

al gorithm Nodes do not need to send request nessages. They know the
val ues of each Xi, and are waiting for the privileged node to rel ease
the CS and update its Xi. The permssion from all other nodes is
inplicit, except for the perm ssion fromthe privileged node. Each node
mai ntains a | ocal variable to indicate whether it is requesting the CS.
Whien a node i is not requesting the CS, and is the next in the ring to
obtain the permssion, it should behave as if it were releasing the CS.
It updates its variable Xi to give the perm ssion to another node. This
avoi ds deadl ocks. After the update, it sends a nessage of the form
| NFORM i, Xi) to all other N-1 nodes. A node k receiving a nessage,
computes T to check if it equals (QAk). If it does and the node is
requesting, then it can enter the CS. If it is not requesting, but it
is next, then it behaves as if it were releasing the CS. The tota

nunber of messages exchanged for a CS entry has an upper bound of (N

1)2 in the worst case, when the next node wishing to enter the CS is
the farthest node in the circular ring fromthe node currently owning
t he perm ssion.

Maekawa's algorithm. Maekawa inposes a logical structure on the
network. In his algorithm[9], a set of nodes is associated with each
node, and this set has a nonenpty intersection with every set
associated with each other node. A node i nust obtain perm ssion from
all other nodes in its hone set Si before it can enter its critica

section (CS). Since the set intersects with every other set of other
nodes, nmutual exclusion is guaranteed. Each other node k in Si is
associ ated with another set Sk for every set in the system Node k acts
as an arbitrator for requests received from i and al so from nenbers of
its home set Sk. Hence, when each node k in Si gives its perm ssion to
node i, then i has coll ected enough rights and can enter its CS. Each
arbitrator node grants only one perm ssion to one single node. No other
node in all sets Sk in the systemw || have enough rights and thus, it
will not be allowed to enter its CS.

Requests are ordered by the use of sequence nunbers in the system
Conflicts are solved by requiring a node to yield if its request

23

sequence nunber is larger than the sequence nunber of any other
request. Ties are solved by favoring the node with the | owest node
nunber .

When node i wants to enter its CS, it increnments the highest sequence
nunmber known and sends a request nessage to every other nenber of Si.
Node i itself pretends to have received a request, since it is also an
arbitrator node.

When receiving a request from i, each node k nenber of Si checks if it
has already granted its permssion. If it has not, it sends its
permssion to i. Oherwise, it enqueues i's request in its ordered
wai ting queue. If any request in the queue has a | ower sequence nunber
than that of i's, a failed nessage is sent to node i. If the request
fromnode i has the | owest sequence nunber, then an inquire nessage is
sent to the node to which perm ssion was granted, to check whether this
node has obtai ned perm ssion fromall other nenbers in its hone set. If
this node has succeeded, it is free to access the CS. If it has not
succeeded, it cedes its permssion to free its nenber node k to service
a request with a |ower sequence nunber. Node k enqueues the
unsuccessful request. It renoves fromits queue the request from node
i, and sends it its perm ssion.

When node i obtains permission from all other nenbers of Si, it can
enter its CS. Upon releasing the CS, a release nessage is sent to al
menbers of Si. When a rel ease nessage arrives at node k, it grants its
perm ssion to the next request in its waiting queue. No action is taken
if the queue is enpty.

The construction of the sets in the system significantly inpacts the
nunber of nessages required to effect an entry to the CS. The rule for
constructing these sets is based on the structure of finite projective
pl anes of N points. The size of these sets is square root of N. Hence,
a node conmunicates with only SQRT(N) nodes to obtain perm ssion. The
total nunber of nessages exchanged in a mutual exclusion invocation is
C* SQRT(N), where Cis a constant between 3 and 5.

The algorithm assumes the existence of an error-free underlying
communi cati ons network. Message transfer delays are finite, but
unpredi ct abl e, and nmessage-order preservation is required.

Sanders' algorithm. Sanders introduces the concept of an infornmation
structure as a unifying principle behind several algorithnms that have
been proposed [9, 20, 3]. Sanders develops a generalized nutual
exclusion algorithm [22] based on this approach. The information
structure describes which nodes maintain informati on about the state of
ot her nodes, and the set of nodes from which each node shoul d request
information or perm ssion before it enters its critical section (CS)

Three sets of nodes are associated to each node i. The inform ng set
li, the request set R, and the status set Si. Wen constructing the
sets, two conditions nust be satisfied: a) |li is a subset of R, and b)
for all i and j either there is a non-null intersection between |i and

24

lj, or both j belongs to R and i belongs to R . The status sets are
determ ned by the informng sets where j is a nmenber of Si if iis a
menber of 1j.

VWhen node i wants to enter its CS, it nmust obtain perm ssion from all
other menbers in Ri. Every other nenber node k of R acts as an
arbitrator to grant its permi ssion to requesting nodes from different
sets for which k is a nenber. Wien k sends its permssion to a
requesting node which is a nenber of its Sk, it sets its variable
CSSTATk to indicate that this node is in the CS. Wen the node is not a
menber of its Sk, then CSSTATk indicates the CS is free. Node k
arbitrates incomng requests only when it has already granted its
perm ssion to a node inits Sk to enter the CS. O herw se, according to
its information in CSSTATk, the CS is free and k sends its perm ssion
right away to the next request in its queue of pending requests.

When arbitrating, node k solves conflicts by following a nmechanism
based on Lanport's timestanped request nessages [8]. Wen it receives
the request fromnode i, the request is placed in k's requesting queue.
If the CSis not free and i's tinestanp is larger than that of the node
i ndicated in CSSTATk, then a fail nessage is sent to i. If 1i's
timestanp is lower, then an inquire nmessage is sent to the node
i ndicated in CSSTATk to find out whether it has been successful in
obtaining permssion fromall other nmenbers in its request set. A fai
nmessage is sent to a node with a larger tinmestanp that has not yet been
sent one. If the CSis free, then the permission is sent to the next
request in the queue and it is renmoved fromit. If the privileged node
is a menber of Sk, then CSSTATk is set to indicate that the privileged
node is in the CS.

When node i releases the CS, it sends a rel ease nessage to all nodes in
li. Each nmenber node in |li sets its CSSTAT to indicate the CS is free.
They send their perm ssion to the next requesting node in the queue

and the request is renoved fromthe queue. |If the privileged node is a
menber of its status set, then CSSTAT is set to indicate which node is
in the CS. They repeat to send their perm ssion until the privileged

node is in their status set, or until the queue is enpty.

Wien a node cedes its permssion, it sends a yield nessage to the node
inquiring. Its request is returned to the requesting queue and the
I nqui ri ng node proceeds as if a rel ease nessage had been received.

The total nunber of nessages required for an entry to the CS to take
effect is |li-{i}| + 2(|R-{i}|). The algorithm assunmes the existence
of a reliable communications network. Message transfer delays are
finite, but unpredictable, and nessage-order preservation is required.

Agrawal-El1 Abbadi algorithm. In their algorithm [2], Agrawal and El
Abbadi inpose a logical tree structure on the network and use the
notion of coteries. Nodes in the systemare logically organized into a

25

binary tree structure. A nmechanismis used to construct tree quoruns
(sets of nodes) derived from the tree structure. The tree quorum
protocol is an alternative approach for the construction of quoruns. A
coterie consists of all the tree quoruns generated from the binary
tree. Any two tree quoruns, nenbers of the coterie, have a nonenpty
i ntersection and none of the tree quoruns is a superset of any other
one. A requesting node nust obtain permssion fromall nmenbers in a
tree quorum before it can nmake use of the critical section. The two
conditions that nust hold for the tree quoruns in a coterie guarantee
the nutual ly exclusive access to the critical section

Their mutual exclusion algorithm is simlar to Maekawa's [9] and
Sanders' [22]. When a node i wants to enter its critical section (CS)
it determnes a tree quorum and sends a timnmestanped request to all
nodes in the quorum It then waits to receive permssion from all
menbers of the quorum Each node nmintains an ordered queue of pending
requests. When a request nessage is at the head of the queue, the node
sends its permssion to the node that originated that request. Wen
node j receives the request from i, it checks if the request at the
head of the queue, if any, has a smaller tinestanp. The request from i
is placed in the queue. If the request at the head (before i's request
was enqueued) has a greater tinmestanp, an inquire nmessage is sent to
check if the node has been successful in collecting permssion from al
other nodes in its quorum |If it has not, it cedes its perm ssion by
sending a yield nessage to the inquiring node. If it has succeded, it
ignores the inquire nmesssage. If a yield nessage is received, node j
sends its permssion to i. When a node releases the CS, it sends a
relinqui sh message to all nodes in its quorum Upon the reception of a
relinqui sh nessage, a node renobves the served request from the queue
and sends its permssion to the request at the head of the queue.

Al'l nodes in the binary tree that forma path fromthe root to a |eaf
define a tree quorum |f sone node on the path fails, it is replaced by
two paths starting fromthe children of the failed node and term nating
with the leaves. If a leaf node on a path has failed, then a quorum
cannot be forned.

Under the absence of failures the algorithmrequires Q(log N) nessages
exchanged for an entry to the CS to take effect, and it requires
(N+1)/2 nmessages when sone failures occur. The algorithm incorporates
fault-tol erance by providing several alternative tree quoruns to a
requesti ng node. The algorithmmy not be able to forma tree quorumin
some cases after the failure of log N nodes. The algorithmis resilient
to both node and communication failures and can be generalized to
arbitrary trees.

Singhal's algorithm. In his algorithm [25], a dynamc information
structure is used. The information structure at a node changes with the
state of the system as the node receives nessages from other sites.
Every node i maintains an information structure which consists of two
sets. The request set R, specifies the nodes fromwhich i nust obtain

perm ssion to enter into its critical section (CS). The inform ng set

26

li, specifies the nodes to which i nust send its perm ssion after it
rel eases the CS. For all requesting nodes i and j, there is a non-nul
intersection between R and R; this guarantees the nutual exclusion
condi ti on.

Requests are ordered by the use of |l|ogical clocks according to
Lamport's rules [8]. A node i nmust acquire permssion fromall nodes in
its R to enter its CS. The set R changes by adding those nodes to
which perm ssion is sent, and by renoving those nodes from which
perm ssion is received. The set |i changes by adding those nodes from
which a request is received when either node i is requesting and its
request has a |ower timestanp, or when the request is received when i
is already in the CS. Nodes to which i sends its perm ssion after it
rel eases the CS are deleted fromthe set Ii.

When node i wants to enter its CS, it sends a tinmestanped request to
all nodes in its R and waits to receive their permssion. Wen a
perm ssion is received, the granting node is renoved fromRi. Wen node
j receives the request fromnode i, it can be either requesting, inside
the CS, or not interested in the CS. Wen node j is requesting and its
request has a lower tinestanp, it adds node i to its Ij set. If its
request has a greater tinmestanp, it sends its permssion to i and if
node i was not inits R set, it is added and a request is sent to it.
When node j is in the CS, node i is added to its Ij set. If node j is
nei ther requesting, nor executing the CS, it sends its perm ssion and
node i is added to its R set.

Under light load, the algorithmrequires an average of (N - 1) nessages
exchanged for an entry to the CS to take effect. Under heavy load, it
requires 3 * (N - 1)/2. The algorithm assunes that nessage transm ssion
delay is finite, but unpredictable, and that nmessages are delivered in
the order they were sent. The underlying comrunications network is
assunmed to be reliable. The inpact of nessage loss and site failures is
di scussed and nethods to tolerate these failures are proposed.

5.1 Recapitulation of the performance of permission-based
algorithms.

The total nunber of nessages exchanged for an entry to the CS to take
ef fect can be reduced considerably if the nodes are |logically organized
[1]. By constructing intersecting quorunms or coteries, mutual exclusion
can be achieved efficiently as in [9], [22], [2], and [25].

Tabl e 2 bel ow shows the performance of the algorithnms described above.

The colum in the center indicates the total nunber of nessages
required for a node to enter the CS.

27

ALGORI THM TOTAL MESSAGES OBSERVATI ONS

Lanmport [8] 3*(N-1)

Ri cart-Agrawal a [20] 2*(N-1)

Carval ho- Roucai rol [3] 0 to 2*(N-1) I ndefinite perm ssion.

Raynal [18] 2*(N-1)2 Uses prime nunbers.

Maekawa [9] 3*sqrt(N) to 5*sqrt(N) Uses quoruns.

Sanders [22] [1i - {i}| +2(|R - {i}|) Uses quoruns.

Agrawal - El Abbadi [2] I og Uses tree quoruns.

Si nghal [25] (N-1) to 3*(N-1)/2 Uses a dynamic information structure.

Tabl e 2. Performance of perm ssion-based al gorithns.

Al gorithms based on quoruns provide nore tolerance to faults than other
algorithns [2, 1], because in the case of both node and conmuni cation
failures, several alternative quoruns are provided to a requesting
node. These algorithms exhibit the property of graceful degradation
[2]. The cost, in nmessages, of formng a quorum increases as failures
i ncrease, and the probability of form ng a quorum decreases.

Al the algorithnms described in this section, as well as the ones in
Section 4, allow only one node to be in the CS at a tine. In the
following section, three algorithns that allow nultiple nodes to
execute the CS sinmultaneously are presented.

6. DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS THAT ALLOW MULTIPLE
PROCESSES TO EXECUTE THE CRITICAL SECTION SIMULTANEOUSLY

In the last two sections, algorithnms that allow only one process to
execute in the CS at a time were described. Processes becone
sequenti ali zed because they nust wait to access a shared resource. In
sonme cases, nultiple processes could be allowed to execute in the CS
si mul t aneously. Hence, a higher |evel of concurrency could be attained
in the distributed system

Raymond [17] and Kakugawa et al [7] developed perm ssion-based
algorithnms to allow k nodes to execute the CS at the sane tinme. Srinmani
and Reddy [26] use k tokens to allow up to k nodes to execute the CS
si mul t aneousl y.

Raymond's algorithm. Raynond [17] extends the algorithm of Ricart
and Agrawala [20] to allow up to k nodes in the systemto execute the
critical section (CS) sinultaneously. A node is allowed to enter the CS
when at least N - (k - 1) nodes are not executing within the CS. A
requesti ng node sends a request nessage to all other N-1 nodes in the
system and waits to receive perm ssion from Nk nodes to enter its CS
A permission is inplicitly received with a reply nmessage. \Wien the
requesting node receives N-k reply nmessages, it is free to execute its
CS. The renmaining k-1 reply nessages can arrive at the requesting node
while it is in the CS, or after it has released it. Each node keeps
record of the reply nmessages received by any other node in the system
A node i nmay defer many reply nessages to a node j, when i is executing

28

the CS and the requesting node j receives a reply fromother Nk nodes
while node i is still in the CS. This can occur many tinmes while i is
still executing its CS. Wen this happens, node i sends a reply nessage
whi ch contains the number of replies deferred for requests received
from j.

When node i wants to enter the CS, it sends a request nessage to all
other N-1 nodes. A request nmessage contains the maxi mum sequence nunber
in the system that the node has know edge of. Node i then waits to
receive permssion from N-k nodes. Wien a reply arrives at node i, it
checks the nunber of nodes that are not executing the CS, and if there
are at |east N k+1 nodes out of the CS, node i is free to enter the CS.

When node j receives a request from i, it updates its highest sequence
number known. If Jj is in the CS, or it is requesting the CS and its
sequence nunber is smaller than that in i's request, the sending of a
reply is deferred. O herw se, node j sends a reply nessage to i. Ties
are broken by favoring the small est node nunber. Node j keeps record of
the nunber of times it has deferred the sending of its permssion to
any ot her node.

VWhen a node releases the CS, it sends a reply nessage to all other
nodes for which a reply to their requests was deferred. The reply
nmessage contains the nunber of requests received which are being
replied to.

The algorithmrequires at nost 2 * (N - 1) nessages exchanged for an
entry to the CS to take effect. It assunes the existence of a reliable
communi cati ons network. Message transfer delays are finite, but
unpredi ctabl e, and the order of reception of nessages is unpredictable.

Srimani-Reddy algorithm. Srimani and Reddy devel oped an al gorithm
[26] to allow nultiple sinmultaneous entries to the critical section
(CS). Their algorithmis based on Suzuki and Kazam's algorithm[27].
There exist K tokens in the system to allow K nodes to execute
simul taneously in their CS. Kis fixed and 1<= K < N

Each token contains information about the state of the system This
i nformati on can be updated in each token only when a node possesses the
token. The K tokens are generally updated at different nodes.
Therefore, each token will have different state infornation about the
system A mmjor task in this algorithm is to keep the system
i nformati on up-to-date.

Sequence nunbers are bounded by the use of a large integer L > N
Because of the unpredictable delay in comunication, as well as in the
order of reception of messages, the information about all requests
nmessages in the "previous bounded round"” of any node i nust be
synchroni zed to ensure that they have been recorded in each token in
the system Each node maintains an array PLN of size N to keep record
of the nost recently request serviced for each node. This array is
updated from the information contained in the tokens, and is used to

29

updat e the queue of pending requests in any token. This will prevent a
node from sending an additional token to a requesting node. A node i
t hat possesses a token does not know if another node j has sent its
token to the sane requesting node to which i will send its own. The
information in PLN prevents a node from sending unnecessary tokens
whenever the information needed is available at the node. Each node
keeps track of the nunber of tokens it possesses.

VWhen a node i wants to enter its CS and does not hold a token, it
I ncrenments its sequence nunber and initializes the variables for the
"next bounded round,"” if necessary. Then, a request nessage (of the
same formas in the original algorithm[27]) is sent to all other N1
nodes, and i waits for the arrival of a token. Many tokens can arrive
to service the request. Wien node i wants to enter its CS and possesses
one or nore tokens, it is free to enter. \Watever the case, when i can
proceed to enter its CS, it decrenments the nunber of tokens it
possesses and enters its CS. When it leaves the CS, it updates the
information in the token with its current request serviced. |If
necessary, it waits for the acknow edgenent from all other N-1 nodes
that indicates they all know a "new bounded round" of sequence nunbers
will commence for node i. It updates the information in the token it
just made use of and, if there is a pending request in this token's
queue, it sends the token to the requesting node. If no request was in
t he queue, node i increnents the nunber of tokens it possesses.

When a request from i arrives at node j, it increnments the request
count for i. When necessary, j updates the information in each token it
holds to indicate the start of a "new bounded round” of sequence
nunbers for node i. Also, j sends its acknow edgenent to i, when a new
request count will conmence. Node j updates PLN i], and if it holds a
token and is not requesting, or it has a spare token, then the
information in the token is updated and the token is sent it to node i.

A token has the form PRIVILEGE(Q LN, LT), where Q and LN are the sane
as in the original algorithm[27], and LT is an array of size N which
indicates that all requests from any node i in the "previous bounded
round” have been recorded in the token. When a token arrives at node i,
it updates the information of "new bounded rounds"” for any node
including itself. If it is requesting the CS, it can make use of the
right to enter. Oherwise, it updates the information in the token and
if there is a request in its queue, it sends the token to the
requesting node. If no request is in the queue, node i increnents the
nunber of tokens it possesses.

The algorithmrequires N + K - 1 nessages exchanged (L is a very |large
integer) for an entry to the CS to take effect. If a node holds at
| east one idle token, it can enter the CS without the need to send a
request. The algorithm assumes the existence of a reliable
communi cations network. Message transfer delay are finite, but
unpredi ct abl e, and nessage-order preservation is not required.

Note: In their algorithm the condition if RN[i]:=1 in procedure Pl,
shoul d be equal to 2 rather than to 1. This typographical error nust be

30

corrected when reviewi ng the algorithm

Kakugawa et al algorithm. Kakugawa et al use the notion of coteries
in their algorithm [7], where k nodes in the system are allowed to
enter the critical section (CS) sinultaneously. A coterie is a set of
sets of nodes for which two conditions nust hold. The first, is that
any two sets nust have a non-null intersection, and the second
condition is that no set is a subset of another one. Each set is a
nonempty set and is called a quorum AlIl quorunms in the coterie
intersect with each other, so when a node receives permssion from al
other nodes in its honme quorum it is guaranteed that only that node
will be allowed to enter the CS. To allow nultiple nodes to execute the
CS at the sane tinme the intersection condition in the coterie nust be
nodi fi ed.

A k-coterie is an extension of a coterie. To construct a k-coterie,
three conditions nmust hold. a) For any h quoruns (h < k) that have a

null intersection with each other, there exists another quorumthat has
a null intersection with one of these h quorums. b) For any k + 1
guorums there exists a pair that have a non-null intersection. c) For

any two distinct quorums, none is a superset of the other. By the
noni ntersection property, if less than k processes are in the CS, then
a requesting process can enter the CS by selecting an appropriate
quorum By the intersection property, at nost k nodes can enter the CS
si mul t aneousl y.

Kakugawa et al adopted Maekawa's algorithm [9], but a k-coterie is
constructed. VWhen node i wants to enter its CS, it increnents the
hi ghest sequence number known and sends a request nessage to every
ot her nenber of an appropriate quorum Q. An appropriate quorum would

be one that has a null intersection with another quorum Node i itself
pretends to have received a request. \Wen receiving a request from i,
each menber node j of Q «checks if it has already granted its

permssion. If it has not, it sends its permssion to i. Otherwi se, it
enqueues 1i's request in its ordered waiting queue. Either if the
request granted, or if any request in the queue has a | ower sequence
nunber than that of i's, a failed nessage is sent to node i. Suppose
that the request from node i has the |owest sequence nunber, then an
inquire message is sent to the node to which the perm ssion was
granted, to check whether this node has obtained perm ssion from all
other nenbers in its quorum |f this node has succeeded, it is free to
access the CS. If it has not succeeded, it cedes its permssion to free
its nmenber node j to service a request with a |ower sequence nunber.
Node j enqueues the unsuccessful request. It renoves fromits queue the
request fromnode i, and sends it its perm ssion.

VWen node i obtains permission from all other nenbers of Q, it can

enter its CS. Upon releasing the CS, a release nessage is sent to al
menbers of Q. Wien a rel ease nessage arrives at node j, it grants its

perm ssion to the next request in its waiting queue. No action is taken
if the queue is enpty.

31

As a sinplistic exanple, assune k=2, N=4 and the quoruns in the k-
coterie are q, = {1,2}, q, = {1,3}, dq; = {2,4}, and q, = {3,4}. Two
nodes can execute the CS sinmultaneously. Suppose nodes 2 and 4 want to
enter the CS, if node 2 chooses q,, it acquires the perm ssion from al

of its nenbers; if node 4 chooses q,, it can acquire the pernission

fromall of its nmenbers and hence, at npbst two nodes are in the CS
si mul t aneousl y.

The algorithm assunes a fixed k, 1<= k < N. The construction of the
guoruns in the k-coterie significantly inpacts the nunber of nessages
required to effect an entry to the CS. The nessage conplexity of this
algorithmis Q(s), where s is the size of the largest quorum The total
nunber of nmessages required is C* s, where Cis a constant between 3
and 5.

6.1 Recapitulation of the performance of multiple entries to
the critical section algorithms.

Table 3 below shows the performance of the algorithnms that allow
multiple nodes to execute in the CS sinultaneously. The colum in the
center indicates the total nunmber of nessages required for an entry to
the critical section to take effect for each node.

ALGORI THM TOTAL MESSAGES OBSERVATI ONS
Raynond [17] 2*(N-1) Per m ssi on- based.
Sri mani - Reddy [26] 0 or N+K-1 Token- based.
Kakugawa et al [7] 3*s to 5*s Per m ssi on- based.

K
s

nunber of processes allowed simltaneous access.
size of the |argest quorum

Table 3. Performance of nultiple entries algorithns.

In Raynond's [17] and Srimani-Reddy's [26] algorithnms, a nmmjor concern
iIs to maintain the informati on about the state of the system In the
former, the algorithm has to take care of replies received which
correspond to a request already serviced. In [26], the information in
t he tokens nust be updated to avoid sending a token to a request
al ready serviced and sendi ng unnecessary tokens.

A mpjor task in Kakugawa's et al algorithm [7] is to construct the
quorumnms for the k-coterie. It is not a trivial task

7. CONCLUSIONS

In this survey, 21 distributed nmutual exclusion algorithnms have been
presented. Their principles and characteristics have been described,
and their cost in the nunber of nessages exchanged for an entry to a

32

critical section (CS) to take effect has been shown.

These al gorithnms can be classified into two groups, according to their
mej or design approach. These two groups are token-based algorithns and
perm ssion-based algorithms. In the token-based approach, the right to
enter the CS is given by the possession of a special object called "the
token." The singul ar existence of the token ensures the requirenent for
mut ual exclusion. The possession of the token inplies the right to
enter to the CS

In the perm ssion-based algorithm the right to enter the CS is given
by collecting enough rights fromall nodes in a set. A node nust obtain
perm ssion from all nodes in a particular set to enter the CS. Each
node grants its permssion to only one node at a tine. Sets nust
intersect in a non-null pairwise manner. This ensures the nutual
excl usi on condition

I n token-based al gorithnms, different mechanisns are used for |ocating
the token, circulating the token anong requesting processes, and for
ordering the events in the system Token-based algorithnms are highly
susceptible to the loss of the token. Conplex nechanisns, based on
ti me-outs, nust be executed in order to regenerate a |lost token and to
di scard duplicates tokens.

In perm ssion-based algorithns, a major concern is to find a m ninmm
size of a set of nodes fromwhich to obtain perm ssion to enter the CS.
Different structures are used to reduce the overhead of achieving
mut ual exclusion. A certain type of structure called coterie reduces
the cost considerably. Coteries provide for a high level of fault-
tol erance as well.

A major task in a distributed nutual exclusion algorithmis to reduce
t he nunber of nessages exchanged for an entry to the CS to take effect.
The nunber of nessages can be reduced considerably if the nodes are
| ogi cally strutured.

Three of the algorithms presented are designed to allow multiple

processes to execute the CS sinultaneously. Hence, a higher |evel of
concurrency could be achieved.

33

10

11

12

REFERENCES

AGRAWAL, D., and EL ABBADI, A., "Exploiting logical structures in
replicated databases,” Information Processing Letters, vol. 33,
no. 5, january 1990, pp. 255-260.

AGRAVWAL, D., EL ABBADI, A., "An efficient and fault-tol erant
solution for distributed nutual exclusion," ACM Transactions on
Conputer Systens, vol. 9, no. 1, feb. 1991, pp. 1-20.

CARVALHO, O., ROUCAIROL, G, "On nutual exclusion in conputer
net wor ks, Techni cal Correspondence,” Communi cations of the ACM
vol . 26, no. 2, feb. 1983, pp. 146-147.

GARCI A- MOLI NA, H., BARBARA, D., "How to assign votes in a
di stributed system" Journal of the ACM vol. 32, no. 4, 1985
pp. 841-860.

G FFORD, D. K., "Wighted voting for replicated data," Proc. 7th
Synposi um on Qperating Systens Principles, 1979, pp. 150-159.

HELARY, J., PLOUZEAU, N., RAYNAL, M, "A distributed algorithmfor
mut ual exclusion in an arbitrary network," Conputer Journal, vol.
31, no. 4, 1988, pp. 289-295.

KAKUGAWA, H.; FUJITA, S.; YAMASH TA, M and AE, T., "Availability
of k-Coterie," |EEE Transactions on Conputers, vol 42, no. 5, may
1993, pp. 553-558.

LAMPORT, L., "Tine, clocks, and the ordering of events in a
di stributed system"” Comrunications of the ACM vol. 21, no. 7
july 1978, pp. 558-565.

MAEKAWA, M, "A sqgrt(n) algorithm for mnutual exclusion in
decentral i zed systens,” ACM Transactions on Conputer Systens, vo
3, no. 2, may 1985, pp. 145-159.

MAEKAWA, M ; OLDEHOEFT, A.E.; and OLDEHOEFT, R R, "Operating
Systens, Advanced Concepts,"” Benjam n-Cumm ngs, 1987.

M SHRA. S. and SRIMANI, P., "Fault-tolerant nmutual exclusion
al gorithms," Journal of Systens Software, vol. 11, no. 2, feb
1990, pp. 111-129.

M ZUNO, M ; NEILSEN, ML. and RAO R, "A Token based distributed
mut ual excl usi on al gorithm based on Quorum Agreenents,” 11th Intl.
Conference on Distributed Conputing Systens, 20-24 may
1991, pp. 361-368.

34

13

14

15

16

17

18

19

20

21

22

23

24

25

NAIM, M and TREHEL, M, "How to detect a failure and regenerate
the token in the 1og(n) di stributed algorithm for nmutual
exclusion,” Proc. of the Second Int Wrkshop on Distributed
Al gorithms, Lecture Notes in CS, 1987, pp. 155-166.

NEILSEN, ML. and MZUNO, M, "A DAG based algorithm for
di stributed mutual exclusion,” 11th Intl. Conference on
Di stributed Conputing Systens, 20-24 may, 1991, pp. 354-360.

NISHHO, S.; LI, K.F. and MANNING E. G, "A resilient mutual
exclusion algorithm for conputer networks," |EEE Transactions on
Parallel and Distributed Systens, vol. 1, no. 3, july 1990, pp.
344- 355.

RAYMOND, K., "A tree-based algorithm for distributed Mitua
Excl usion,” ACM Transactions on Conputer Systens, vol. 7, no. 1
feb. 1989, pp. 61-77.

RAYMOND, K., "A distributed algorithm for nultiple entries to a
critical section,” Information Processing Letters, no. 30, feb.
1989, pp. 189-193.

RAYNAL, M, "Prinme nunbers as a tool to design distributed
algorithns,"” Information Processing Letters, vol. 33, no. 1, oct.
1989, pp. 53-58.

RAYNAL, M, "A sinple taxonony for distributed nutual exclusion
al gorithnms," Operating Systens Review, vol. 25, no. 2, apr. 1991,
pp. 47-49.

RI CART, G and AGRAVALA, A., "An optimal algorithm for nutual
exclusion in conputer networks," Comunications of the ACM vol
24, no. 1, jan. 1981, pp. 9-17.

RI CART, G and AGRAVWALA, A K., "Author response to 'on nutua
exclusion in conmputer networks' by Carvalho and Roucairol,”
Conmmuni cations of the ACM vol. 26, no. 2, feb. 1983, pp. 147-148.

SANDERS, B., "The information structure of distributed nutual
exclusion algorithnms,” ACM Transactions on Conputer Systens, vol
5, no. 3, aug. 1987, pp. 284-299.

SI LBERSCHATZ, A. and PETERSON, J.L., "Operating System Concepts,"
Addi son-Wesl ey, Alternate edition, 1988.

SINGHAL, M, "A heuristically-aided algorithmfor nutual exclusion
in distributed systens,” | EEE Transacti ons on Conputers, vol. 38,
no. 5, may 1989, pp. 651-662.

SINGHAL, M, "A dynam c information-structure mutual exclusion

algorithmfor distributed systens,” |EEE Transactions on Parrall el
and Distributed Systens, vol. 3, no. 1, jan. 1992, pp. 121-125.

35

26

27

28

SRI MANI', P.and REDDY, R., "Another distributed algorithm for
multiple entries to a critical section,” Information Processing
Letters, vol. 41, no. 1, jan. 1992, pp. 51-57.

SUZUKI, |. and KASAM, T., "A distributed nutual exclusion
al gorithm"™ ACM Transactions on Conputer Systens, vol. 3, no. 4,
nov. 1985, pp. 344-349.

THOMAS, R. H., "A mpjority consensus approach to concurrency
control for multiple copy databases,” ACM Transactions on Dat abase
Systens, vol. 4, no. 2, June 1979, pp. 180-2009.

36

O©CoOoO~NOOOUOTD,WNPE

APPENDIX A

Procedure P1;
begin
Requesti ng: =t r ue;
i f not HavePrivil ege then

begi n
RN[I]:=RN[I] + 1;
for all Jin {1, 2,..., N} - {I} do

Send REQUEST(l, RN[I1]) to node J;
Wait until PRIVILEGE(Q LN) is received;
HavePri vil ege: =true;

end;
Critical Section;
LN[1]:=RN[1];
for all Jin {1, 2,..., N} - {I} do

if not in (Q J) and (RNJJ] = LNJJ] + 1) then
Q =append(Q J);
if Q<> enpty then
begi n
HavePri vi | ege: =f al se;
Send PRIVILEGE(tail (Q, LN) to node head(Q
end;
Requesti ng: =f al se
end;

procedure P2; (* REQUEST(J, n) is received; P2 is indivisile *)
begi n
RN J] : =max(RN[J], n);
i f HavePrivil ege and not Requesting and (RN J]=LN J] +1)then
begi n
HavePri vi |l ege: =f al se;
Send PRI VILEGE(Q LN) to node J
end
end,

Fig. 1. Suzuki and Kazam 's al gorithm

37

