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A SURVEY OF DISTRIBUTED MUTUAL EXCLUSION
ALGORITHMS

1. INTRODUCTION.

Over the last decade distributed computing systems have attracted a
great deal of attention. This is due, in part, to the technological
advances in the design of sophisticated software and communication
interfaces, the availability of low-cost processors and the rapid
decline in hardware costs. The motivations for building  distributed
computing systems are many. Resource sharing, parallel processing,
system availability and communication are four major reasons. By
distributing a computation among various sites, processes are allowed
to run concurrently and to share resources, but still work
independently of each other.

Many distributed computations involving the sharing of resources among
various processes require that a resource be allocated to a single
process at a time. Therefore, mutual exclusion is a fundamental problem
in any distributed computing system. This problem must be solved to
synchronize the access to shared resources in order to maintain their
consistency and integrity. The major goal of this paper is to get the
reader acquainted with all relevant major approaches for solving the
mutual exclusion problem in distributed computing systems.

This paper describes the principles and characteristics of diverse
distributed mutual exclusion algorithms for distributed computing
systems. Their major design approaches, the assumptions made about the
distributed environment, and the order of magnitude of message
complexity will be described. Three papers are presented that introduce
a new concept in allowing multiple processes to enter a critical
section simultaneously.

The rest of the paper is organized as follows: in Section 2, the
requirements for mutual exclusion algorithms are formulated and
characteristics and assumptions about the distributed environment are
discussed. In Section 3, distributed mutual exclusion algorithms are
classified by two basic design approaches, and the two approches are
described. Sections 4 and 5 are dedicated to the description of diverse
distributed mutual exclusion algorithms grouped by their major design
approach. In Section 6, three algorithms that are designed to allow
multiple simultaneous entries to the critical section are described.
Concluding remarks are presented in Section 7.

2. MUTUAL EXCLUSION IN DISTRIBUTED COMPUTING SYSTEMS

A distributed computing system is a collection of autonomous computing
sites that do not share a global or common memory and communicate
solely by exchanging messages over a communication facility. 
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In a distributed computing system any given site (also refered to as
"node") has only a partial or incomplete view of the total system and a
system-wide common clock does not exist. Processes must share common
hardware or software resources, cooperating in such a way that they can
work in parallel and independently of each other. The access to a
shared resource must be synchronized to ensure that only one process is
making use of the resource at a given time.

Each process has a code segment, called a critical section, in which
the process can access the shared resource. The problem of coordinating
the execution of critical sections by each process is solved by
providing mutually exclusive access in time to the critical section. A
process is said to execute repeatedly a sequence of non-critical
section code and critical section code segments, each of finite
execution time. Each process must request permission to enter its
critical section and must release it after it has completed its
execution.

A mutual exclusion algorithm must satisfy the  following requirements
[23, 10]:

1. At most one process can execute its critical section at a given
time.

2. If no process is in its critical section, any process requesting
to enter its critical section must be allowed to do so in finite
time.

3. When competing processes concurrently request to enter their
respective critical sections, the selection cannot be postponed
indefinitely.

4. A requesting process can not be prevented by another one to
enter its critical section within a finite delay.

To simplify, an algorithm must provide mutually exclusive access to a
resource, ensure deadlock freedom, ensure starvation freedom, and must
provide some fairness in the order that requests are granted.

Two approaches can be used to implement a mutual exclusion mechanism in
a distributed computing system. In a centralized approach, one of the
nodes functions as a central coordinator. Processes ask only the
coordinator for permission to enter their critical section. Only when a
requesting process receives permission from the coordinator can it
proceed to enter its critical section. The central coordinator is fully
responsible for having all the information of the system and for
granting permission to make use of a shared resource. 

In a distributed approach, the decision making is distributed across
the entire system and the solution to the mutual exclusion problem is
far more complicated because of the difficulty to obtain a complete
knowledge of the total system. This is due to the lack of a common
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shared memory, a common physical clock and because of unpredictable
message delay.

Only distributed algorithms will be presented in this paper. The
characteristics and assumptions made in their design about the
distributed environment are discussed below.

2.1 The distributed mutual exclusion model.

The effectiveness of an algorithm depends on the suitability of the
model as well as the validity of the assumptions made about the
distributed environment. All the algorithms presented in this paper
share in their design the following assumptions and conditions for the
distributed environment:

1. All nodes in the system are assigned unique identification
numbers from 1 to N.

2. There is only one requesting process executing at each node.
Mutual exclusion is implemented at the node level.

3. Processes are competing for a single resource.

4. At any time, each process initiates at most one outstanding
request for mutual exclusion.

5. All the nodes in the system are fully connected.

When reviewing an algorithm, attention should be paid to the
assumptions made about the communications network. This is very
important because nodes communicate only by exchanging messages with
each other. The following aspects about the reliability of the
underlying communications network should be considered.

Message delivery guaranteed. Messages are not lost or altered
and are correctly delivered to their destination in a finite amount
of time.

Message-order preservation. Messages are delivered in the order
they are sent. There is no message overtaking.

Message transfer delays are finite, but unpredictable. 
Messages reach their destination in a finite amount of time, but
the time of arrival is variable. 

The topology of the network is known. Nodes know the physical
layout of all nodes in the system and know the path to reach each
other.

Early algorithms did not consider fault-tolerance issues. An algorithm
in a distributed computing system must consider fault-tolerance aspects
to detect and recover from failures. A resilient algorithm takes
advantage of the high availability of the system in a distributed
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environment. Even when nodes fail, the rest of the system can still
work, albeit with a degraded performance.

Due to the nature of a distributed environment, many failures can
occur. These can take place either in a channel or in a node, or in
both. The following failures should be considered for an algorithm to
be resilient.

1. Channel failure, supression/shutdown and recovery/insertion.

2. Node failure, supression/shutdown and recovery/insertion.

3. Network partitioning and system reconfiguration.

4. Complete and partial node failures. Nodes completely fail or
behave maliciously.

Recent algorithms incorporate fault-tolerance mechanisms to detect and
recover from some failures in the system. Another aspect to consider in
an algorithm, is the amount of information that is maintained by each
node in the system and how it is used. The state information about the
total system can be used to reduce the message traffic in the network
and to recover from failures.

The performance of the algorithms presented here will be evaluated
using the total number of messages required for a node to enter the
critical section as a criterion. Message traffic should be minimized in
order to decrease the overhead in the communications network. In
resilient algorithms, failures in the system need the exchange of more
information than in normal operation, in order to reconstruct the state
of the system as it was before the failure. Hence, their performance
will be evaluated under normal conditions.

Distributed mutual exclusion algorithms are designed based on two basic
principles [19, 24]: the existence of a token in the system, or the
collection of permission from nodes in the system. These two approaches
are described in the following section.

3. BASIC APPROACHES FOR THE DESIGN OF DISTRIBUTED MUTUAL
EXCLUSION ALGORITHMS

Distributed mutual exclusion algorithms can be classified into two
groups by a basic principle in their design [19, 24]. These two groups
are token-based algorithms and permission-based algorithms. The basic
principle for the design of a distributed mutual exclusion algorithm is
the way in which the right to enter the critical section is formalized
in the system.

3.1 The token-based approach.

In the token-based group the right to enter a critical section is
materialized by a special object, namely a token. The token is unique
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in the whole system. Processes requesting to enter their critical
section are allowed to do so when they possess the token. The token
gives to a process the privilege of entering the critical section. A
token is a special type of message. The singular existence of the token
implies the enforcement of mutual exclusion. Only one process, the one
holding the token, is allowed to enter to its critical section. At any
given time the token must be possessed by one process at most.

Granting the privilege to enter the critical section is performed by a
single process, which is the current owner of the token. This process
chooses the next token owner and sends it the token.

A distinction has to be made between the mechanisms used to move the
token among the processes in the system [19, 23]. If processes are
logically organized in a direct ring structure, the token can travel
around the ring from process to process to give them the right to enter
the critical section. If a process receives the token and it is
interested in the critical section (CS), it can proceed to its
execution. After the process exits its CS the token is released to
circulate again. On the other hand, if the process is not interested in
its CS it just passes the token to the next node in the logical ring.
If the ring is unidirectional, starvation freedom is ensured. Under
light load this method has a high cost since the token message
circulates even if no process wants to enter the CS, but it is very
effective under high load.

Another method to move the token in the system is by asking for it when
a process wants to enter its CS. A requesting process sends a request
message to the token holder and waits for the token arrival. After
completing the execution of its CS, the process holding the token
chooses a requesting process and sends it the token. If no process
wants to use the token, the token holder does not need to send the
token away. Using this method a major concern is how to locate the
token holder in order to minimize message exchanges originated by a
requesting process.

The token-based approach is highly susceptible to the loss of the
token, since this can induce a deadlock situation. Also, problems can
occur with the existence of duplicated tokens. Complex token
regeneration must be executed to ensure the uniqueness of the token.

3.2 The permission-based approach.

In the permission-based group the right to enter a critical section is
formalized by receiving permission from a set of nodes in the system. A
process wishing to enter its critical section asks the others to give
it their permission to proceed; and then it waits until these
permissions have arrived. A process enters its CS only after receiving
permission from all nodes in a set.

Non-requesting processes send their permission to requesting ones. Each
process may grant its permission to only one process at a time. A
priority or an order of events has to be established between competing
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requesting processes so only one of them receives permission from all
other nodes in the set. Only one process, the one that has received
permission from all members of a given set of nodes, is allowed to
enter the critical section. This enforces the requirement for mutual
exclusion.

Granting the privilege to enter the critical section is performed by
the set of nodes that send their permission to requesting processes.
Conflicts are solved by a priority or an order of events mechanism.

The problem of finding a minimal number of nodes from which a process
has to obtain permission to enter its CS has to be considered. This can
be translated as to how many rights does a process have to collect in
order to proceed to the execution of the critical section. Many
protocols have been developed to find a majority or quorum of processes
from which rights have to be collected. The solution to this problem
has a direct impact in the cost of messages exchanged per mutual
exclusion invocation.

4. DESCRIPTION OF TOKEN-BASED ALGORITHMS.

In these algorithms a special message called "token" or "privilege" is
used to pass the right of entering the critical section among a group
of uncoordinated, but cooperative processes. The singular existence of
the token directly implies that only a single node is allowed to enter
the critical section. This provides for mutual exclusion access to
shared resources.

Deadlock occurs if no node is in its critical section and there are two
or more processes wishing to enter the CS, but they are not able to do
so. This could occur essentially if the token is lost or does not
eventually reach a node which has requested it. The loss of the token
cannot be easily distinguished from system connectivity loss. The
existence of more than one token would violate the mutual exclusion
requirement, thus the detection of a token loss is not a trivial task.

All the algorithms presented in this section claim to satisfy the
mutual exclusion requirement, be deadlock free and starvation free.
Some of them do not consider fault-tolerance aspects, and some make use
of information about the state of the system or impose a logical
structure to reduce the maximal number of messages to be exchanged for
a critical section entry.

Their major characteristics and assumptions will be discussed and the
number of messages exchanged for an entry to the critical section to
take effect will be used as a complexity measure to compare them. The
first four algorithms described do not consider fault-tolerance aspects
[21, 27, 12, 14]. The next three discuss the effect of failures and
suggest recovery mechanisms that can be incorporated to the algorithm
[6, 16, 24]. The last three algorithms [13, 11, 15], incorporate some
mechanisms for the recovery from different kinds of failures, the
regeneration of a new token, the elimination of duplicate tokens, and
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the reconstruction of the system after a failure. All algorithms in
each group are presented in chronological order.

Ricart-Agrawala algorithm. In their algorithm [21] each node keeps
a request sequence number counter and maintains an array request_data
of size N. This array holds information about the most recent request
received from all other nodes in the system. When a node wants to enter
its critical section and does not have the token, it increments its
request sequence number  counter and sends a request message of the
form REQUEST(my_sequence_number, my_id), to all other N-1 nodes. It
then waits for the arrival of the token message. If it has the token or
the token arrives, it can proceed to enter its critical section.

The token message has the form TOKEN(token_data) where token_data is an
array of size N: token_data[j] contains j's request sequence number
granted most recently. When node i leaves its critical section, it
updates token_data[i] with its sequence number to indicate that its
current request has been granted. Next, it searches a logical circular
list for the first node whose last request has not been granted yet and
sends it the token. If no node has sent a request, node i retains the
idle token. A node holding an idle token can enter its critical section
without the need to send a request message. 

When a node k receives a request message from a node j, it updates its
request_data[j] with the most current request sequence number received
from j that k knows of. This update takes care of out-of-order request
messages and old requests already granted. If node k is holding the
token and is not in its critical section, then k sends the token to
node j.

The algorithm requires N messages exchanges for each critical section
entry, or 0 messages if the requesting node is holding an idle token.
The token moves in a logical circular ring of nodes ordered by their
unique identification number. Therefore, a first-come-first-served
service is not guaranteed. The algorithm assumes nodes do not fail and
the existence of a fully reliable communications network. Transfer
delays are finite, but unpredictable, and message-order preservation is
not required.

Suzuki-Kazami algorithm. Suzuki and Kazami developed an algorithm
[27] similar to the Ricart and Agrawala algorithm [21] presented above.
Each node maintains an array of size N to store the sequence number of
the most recent token invocation from all nodes in the system. When
node i wishes to enter its critical section and does not hold the
token, it increments its request counter RN[i] and sends a request
message of the form REQUEST(i, RN[i]), to all other N-1 nodes. It then
waits for the arrival of the token message. If it has the token or the
token arrives, it proceeds to enter its critical section.

The token message has the form PRIVILEGE(Q, LN) where Q is a queue of
requesting nodes and LN is an array of size N which contains the
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sequence number of the request granted most recently to each node.

After exiting its critical section, node i updates LN[i] with its
current request granted RN[i]. Next, it enqueues all nodes not in Q
from whom it has received a request which has not been granted yet.
Nodes are inserted at the rear of the queue in an ascending node number
order. If there exists a process in Q, the token is sent to the process
at the front of it. If Q is empty, node i retains the idle token. A
node holding an idle token can enter its critical section without the
need to send a request message.

When a request from node j arrives, RN[j] is updated with the most
current request number ever received from it in order to discard out-
dated information. This would take care of old requests already granted
and out-of-order request messages. If node i is holding the token, not
requesting its critical section and the most current request from j has
not been served yet, then the token is sent to node j.

The algorithm requires N messages exchanges for each mutual exclusion
invocation or 0 messages if the requesting node is holding an idle
token. It is assumed that transfer delays are finite, but
unpredictable. Message-order preservation is not required.

The algorithm has only two procedures (see appendix A), P1 and P2; only
P2 is executed indivisibly. In procedure P1, if Q is empty and a
request message arrives after line 20 and exactly before line 21 and
procedure P2 is called, it could happen that this request would starve
for some time (at least, until another node originates a request).

Sequence numbers are unbounded, but the algorithm can be modified in
order to bound them. The modified algorithm requires L*N + (N-1)
message exchages for L mutual exclusion entries, where L is a fixed
integer greater than or equal to 2.

Mizuno-Neilsen-Rao. In their algorithm [12], Mizuno et al.
incorporate quorum agreements to form groups of nodes in the system and
adopt the mechanism to move the token used in Suzuki and Kazami's
algorithm [27].

A quorum agreement (Q, Q-1), is a pair of sets which contain subsets of
all nodes in the system and where every member of Q intersects with
every member of Q-1. A quorum agreement data structure is used to
reduce the number of messages exchanged to perform an entry to the
critical section.

Each node in the system is a member of at least one set in Q and a
member of many sets in Q-1. For a node i, quorums from Q are called the
request set Ri, and quorums from Q-1 are called the acquired set Ai.
The condition, Ri intersection Ai <> 0 holds. This means that Ri and Ai 
are related by at least one member common to both sets. Messages are
exchanged through this relation-link, or intermediate node, between
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both sets.

Basically, the mechanism for locating the token is as follows. When
node i wants to enter its critical section and does not hold the token,
it sends request messages, which contain its new sequence number RN,
only to all other members of Ri. The best case is when another member
of Ri is holding the token, then the process of locating the token
ends. Suppose that this is not the case; then each of the other nodes j 
in Ri are also members of at least one set Aj. This means that at this
point one member in all acquired sets in the system know of the request
from node i and have updated their RN array. 

One node in a set Aj is holding the token (unless the token is
traveling in the system, but this condition will be met in a finite
amount of time) and this node j is not a member of Ri. Node j has sent
an ACQUIRED(j, LNj) message to all other nodes in Aj. This message
indicates that j has received the token. Upon receiving the acquired
message from j, all other nodes k in Aj check if they have requests
that have not been granted yet. One of these k  nodes is the relation-
link (or intermediate node) to Ri, so it confirms it has an outstanding
request from i and sends a REQUEST(RNk) to node j. The request contains
the whole RN array because there could exist many pending requests.

The token holder now knows of the request from node i. It updates its
RN array and the LN array in the token, and enqueues i's request in the
token's queue. Requests are enqueued in an ascending node number order.
After node j leaves the critical section, the token is sent to the next
node in the token's queue. If the queue is empty, node j holds the idle
token.

The performance of the algorithm, in terms of the number of messages
exchanged for an entry to the critical section, depends upon the
underlying quorum agreement. If it is based on the binary tree
protocol, the upper bound is in the order of magnitude of log N. The
upper bound using quorum agreements based on finite projective planes
is approximately 3 * SQRT(N). A modified grid-set protocol may be used
to generate the quorum agreements and the upper bound in this case
would be (2 * SQRT(2) * SQRT(N) - 2). The algorithm from Suzuki and
Kazami is a special case of this algorithm if all nodes except i are in
Ri and i is the only node in Ai.

Neilsen-Mizuno algorithm. Neilsen and Mizuno impose a static
logical structure on the communications network. Nodes are arranged in
a directed acyclic graph and communicate only with their neighbors
[14]. A node or a token does not need to maintain a queue of pending
requests. This queue is implicity maintained by the state of each node
in the system.

Each node holds two integer variables, LAST and NEXT, and a boolean
variable HOLDING. LAST indicates the last neighbor node from which a
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request was received, either on its behalf or on one of its neighbors'
behalf. If this node is the origin of the request, then LAST = 0. The
variable NEXT indicates the node which will be granted the token after
this node makes use of it (the next node in the implicit queue of
pending requests in the system).

When a node j wants to enter its critical section (CS) and does not
hold the token, it sends a request of the form REQUEST(my_id, origin)
to LAST. In this case my_id = origin = j. Node j sets LASTj:=0,
becoming a sink node, and waits for the token to arrive. If node j 
receives a request from node k at this point, it sets NEXTj:=origin and
LASTj:=k. Node j has become an intermediate node in the path along
which a request message travels.

If an intermediate node j receives a REQUEST(y, origin) from a neighbor
node y, it will forward a REQUEST(j, origin) to LASTj, on behalf of its
neighbor. It will then add y to the path by setting LASTj:=y. The
request message will travel along the path until it arrives to the sink
node. The request from the origin node will be "enqueued". The origin
node will become the sink node and the last in the path (LASTorigin:=
0).

When j receives the token, it can enter its CS. After exiting it, if
there is a pending request (NEXTj > 0), the token is sent to NEXTj and
NEXTj:=0. If there were no pending requests, node j keeps the idle
token. A node holding an idle token does not need to send a request to
enter its critical section again.

The queue of pending requests can be deduced by following the state of
NEXT in each node, starting at the node holding the token. The
algorithm does not need sequence numbers and requires very simple data
structures. Messages are very small, reducing the overhead in the
communications network, which it is assumed to be reliable. The total
number of messages exchanged per critical section entry depends on the
topology of the logical structure, but has an upper bound equal to
(D+1), where D is the length of the longest path in the network; the
diameter of the network. In a star topology the upper bound is 3. For a
linear topology, the upper bound is N.

Helary-Plouzeau-Raynal algorithm. In their algorithm [6], a
process wanting to enter its critical section and not possessing the
token sends a request only to its neighbors and waits for the token. If
it holds the token or the token arrives, it can proceed to execute the
critical section. After completing the execution of its critical
section, the node calls a procedure for transmiting the token.

A request message contains the identification of the node originating
the request, the request time based on a logical clock following
Lamport's rules [8], the identification of the node forwarding the
request, and a set of nodes for which a request has already been sent.
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Requests are propagated in the network based on a knowledge-transfer
control method. A node receiving a request knows who originated it,
which neighbor forwarded it, and finds out to which of its own
neighbors the request has not been sent yet. Next, it propagates the
request only to those neighbors. A return path to the requesting node
is constructed  with the identification of the nodes that have
propagated the request. When the node holding the token has completed
the execution of its critical section it can send the token directly to
the requesting node following the return path.

Upon receiving a request from its neighbor node j, node i updates out-
dated information that it maintains for j. This would take care of out-
of-order messages from node j and of deleting requests already granted
to j. The request is added to i's set of known pending requests. Node i 
synchronizes its logical clock, finds out the set of neighbors to which
it will propagate the request, adds itself to the return path, and
propagates the request. If node i is holding an idle token, then it
calls a procedure for transmiting the token.

In the procedure for transmiting the token, node i finds the oldest
request from its own set of pending ones, updates the time of that
request in the token's array with its logical clock, and sends the
token through the return path.

When a node k receives the token message and the token final
destination node is not itself, it checks the return path and forwards
the token to its neighbor following the return path. If the token is
addressed to k, then it can proceed to enter its critical section.

The algorithm assumes the existence of a reliable communications
network and finite but unpredictable transfer delays. The algorithm
does not require message-order preservation. Nodes need not to have any
prior knowledge of the network topology. The only knowledge owned by a
node is the name of its neighbors. The number of messages sent to
locate the token is reduced by using a flooding broadcast technique and
a knowledge-transfer control technique. The number of messages required
per critical section entry depends on the actual network topology.
Whatever topology is considered, if the requesting node owns the token
there is no need to send any request messages. For a linear topology,
the total number bounds are N and 2(N-1). The total number of messages
varies from N to 2N in a ring topology. In a complete network the total
message number is N. Requests are fully ordered by the use of logical
clocks and are granted in a first-come-first-served manner.

Raymond's algorithm. In Raymond's algorithm [16] a static logical
tree structure is used. Nodes are arranged in an unrooted tree
structure and communicate only with their neighbors. Each node holds
information pertaining to its own neighbors only. The location of the
token is relative to those neighbors. A node, say A, holding the token
becomes the privileged node and its neighbors, say B, C, and D, know A 
holds the token. Neighbors of D, say E and F, do not know that A is
holding the token. They only know that D represents the relative
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location of the token. 

If node E wants to enter its critical section, it needs to send a
request to D after placing itself in its own request queue. Node D adds
E's request in its request queue and sends a request to A on its own
behalf. Suppose now that node D receives a request from its neighbor
node F, it enqueues F's request, but it does not send another request
to A since it has already done so. Furthermore, node D now wants to
enter its critical section, so it enqueues its own request in its
request queue, but it does not send  a request to A since it has
already done it. 

Node A receives only one request from node D. It enqueues D's request
on its request queue. After completing the execution of its critical
section, A sends the token to the first node in its queue, say D, and
learns that node D will now be the relative location of the token. If A 
discovers that there are still nodes enqueued in its request queue, or
if A wants to enter its critical section again, it sends a request to
node D.

When node D receives the token, it finds that node E's request is the
oldest one in its request queue. It sends the token to E, and learns
that the relative location of the token is now node E. It also
discovers that its request queue is not empty (F's request and D's own
request are enqueued) and sends a request message to E (the relative
location of the token).

Upon receiving the token, node E finds its own request as the oldest in
the queue. When it receives the request from node D, it adds it to its
queue of pending requests. When it releases the critical section, finds
the oldest request in its queue, D's request in this case; sends the
token to D and learns that the relative location of the token is now
node D.

Node D receives the token and finds that the oldest request is from
node F. It sends the token to F and learns that the relative location
of the token is node F. Since its queue is not empty, it sends a
request to F. And the process continues.

If for node D the relative location of the token is node F, this could
be seen as a directed edge D->F.  As the token travels along the
unrooted tree, the direction of the edges changes. At one point, the
edges in the system would represent a directed acyclic graph, and a
single directed path could be deduced from each node to the token
holder.

The algorithm assumes a reliable communications network and finite but
unpredictable transfer delays. It does not require message order
preservation. Messages do not need sequence numbers to enforce the
order of events and requests are granted in a first-come-first-served
manner. The total number of messages exchanged for an entry to a
critical section is typically in the order of magnitude of log N. A
piggyback strategy could be used to reduce the number of messages. A
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recovery procedure from the failure of a node is presented and it could
be incorporated to the algorithm. The system can recover from a failed
node, providing that not all of its neighbors also fail. Nevertheless,
it cannot recover from the failure of the node holding the token and
all of its neighbors.

Singhal's algorithm. In his algorithm [24], each node maintains
information about the state of the system. This information is
disseminated implicitly within request and token messages. Whenever a
node wants to enter its critical section, it uses a heuristic to deduce
from its available state information what nodes are probably holding
the token and sends a request only to those, rather than to all other
nodes in the system.  The heuristic is used in order to minimize the
number of messages sent to locate the token.

Each node uses a local sequence number counter to keep track of its
last request invocation. Two vectors are used by each node to store the
information about the state of the system. The state vector stores the
latest known states of all sites. The possible states are: requesting,
not requesting, executing its crital section, and holding an idle
token. The other vector indicates the latest known request invocation
for each site. The token message also contains two vectors, one for
storing the state of each site and the other  one for storing sequence
numbers for each node.

When a process i  wants to enter its critical section and is not
holding the token, it increments its sequence number counter and sends
a request message of the form request(i, SN[i]), where SN[i] indicates
its latest request. Node i uses the state information it has about the
system and sends a request to only those nodes which are in the
"requesting" state. One of this nodes is likely to know the location of
the token, or the token will be granted to it in a finite amount of
time. After sending its request message, node i waits for the arrival
of the token. If node i is holding the token or the token arrives, it
can proceed to execute its critical section.

When node j receives a request from i, it checks the request sequence
number against its sequence number vector to discard out-dated
requests. If the request is a new one from node i, then it verifies the
information in its state vector to update i's state. If node j is
requesting and the state information for i, before the update, was not
"requesting," then j sends a request message to i because it became one
of the nodes that probably know the location of the token. If node j is
holding an idle token, then it sends the token to i.

When a node completes the execution of its critical section, it
compares the information of its own state vectors against the vectors
in the token, and updates all vectors with the most current information
about the state of each node. The update rule is such that if the
vectors in the token hold out-dated information, these are updated with
the information contained in the node's state vectors, and vice versa.
After the state information has been updated, the node uses arbitration
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rules to determine which requesting node should get the token. The
token will be granted to the nearest requesting node with the lowest
sequence number. Nodes are ordered in an unidirectional logical ring by
their unique number identification. This rule guarantees that nodes
which have executed their critical section least frequently will get
the token, and prevents a node from obtaining the token twice while
some other node is waiting for it.

The algorithm assumes that message propagation delay is finite, but
unpredictable. The number of messages exchanged for an entry to a
critical section is (N+1)/2 in case of light traffic, and N in the case
of heavy traffic. In light traffic a node holding an idle token does
not need to send a request message if it wants to enter its critical
section. Singhal discusses the impact of node and communication link
failures, and presents recovery procedures that could be incorporated
into the algorithm.

Naimi-Trehel algorithm. In their algorithm [13] an underlying
dynamic logical structure is used on the communications network.
Requesting processes are logically arranged, by their requests, as a
rooted tree. As a request from node i travels along the path from node
i to the root node, node i becomes the new parent of each node on the
path, except for itself. Thus, node i becomes the new root node of the
tree.

Neither the nodes nor the token needs to maintain a queue of pending
requests. This queue is implicity maintained by the state of each node
in the system. Each node keeps two integer variables, LAST and NEXT.
The former indicates the last node from which a request was received
and the neighbor node in the path to the root to whom this node will
send a request message the next time it wants to enter its critical
section. NEXT indicates the node to whom the token will be granted
after this node leaves its critical section.

When a node i wants to enter its critical section (CS) and LASTi <> i
(node i is not holding the token), it sends a request to node LASTi, it
sets LASTi:=i, and waits for the token to arrive. If it has the token
or the token arrives, it enters its CS directly. 

When the request from node i arrives at a non-privileged node j in the
path to the token holder node (the privileged node), node j forwards
the request from i to node LASTj. Node j sets LASTj:=i. When the
request from node i arrives at the privileged node, say node k, and k 
is the root node of the tree (LASTk:=k) and it is in its critical
section, then node k sets NEXTk:=i and LASTk:=i. If k is the root node
and is holding an idle token, then it sends the token to node i and
sets LASTk:=i. In the case that node k is not the root node, it
forwards the request from node i to node LASTk. The latter happens when
node k received a request from another node prior to the request from
node i and thus it became part of the path form node i to the root
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node.

When a privileged node k holding the token leaves the critical section,
it sends the token to node NEXTk and sets NEXTk:=0. If there were no
pending requests (NEXTk:=0), the node keeps the idle token.

The queue of pending requests can be deduced by following the path of
the NEXT state in each node. The head of the queue is the privileged
node. The token moves sequentially traversing this path in the tree.
The algorithm does not require sequence numbers for ordering the
events. Messages are very small since very simple variables are
transmitted. This reduces the overhead in the network.

The average number of messages exchanged for an entry to the critical
section is in the order of log N. A node holding an idle token does not
need to send a request to enter its critical section again.

The algorithm assumes the existence of a fully reliable communications
network. Transmission delays are finite and messages need not be
delivered in the order they are sent. The algorithm incorporates a
mechanism for the detection of and recovery of the system from node
failures. The mechanism is based on the use of two delays, one
indicates a presumption of failure (Twait) and the other permits the
broadcast of a question and the reception of the answers (Telec). Each
node is in one of 5 possible states: waiting, consulting, query,
candidate or observer.

When a node i sends a request message, it enters a waiting state. If it
does not receive the token within Twait, there is a presumption of
failure. If a failure has occured, node i consults if any node k has
record of its request and NEXTk=i. After Telec has timeout, it queries
the other nodes to detect if the token is present in the system. When
this Telec expires, node i becomes a candidate to regenerate the token,
broadcasts an election message and activates another Telec. When
several other are candidates in the same Telec interval, the one with
the smallest node number will be elected. All other nodes in the system
become observers and wait for a "candidate_elected" message from the
elected node to resume operations. The elected node possesses the new
token and becomes the root of the reorganized tree. All nodes set their
LAST to be the elected node number and NEXT is set to 0.

During the interval delays at the consulting and query phases, the
token or an answer from another node may arrive, and the inquiring node
goes back to the waiting state. Queries for the presence of the token
in the system are recorded by the nodes for the case in which the token
is travelling. The algorithm assumes that when a node fails, it
continues to fail during the election process. It does not consider
what happens when a failed node recovers and is incorporated to the
system. This node may be holding an old token. Failures in the
communications network are not considered in the algorithm.
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Mishra-Srimani. Mishra and Srimani extended the algorithm of Suzuki
and Kazami [27] and incorporated a fault tolerance mechanism to recover
the system from a single node failure [11]. A lost token can be
regenerated and the state of each site can be reconstructed. The
algorithm ensures the elimination of duplicated tokens in the system. 

Fault tolerance is implemented using a time-out mechanism. When
process j wants to enter its critical section it sets a time-out after
sending its request to all other nodes. The algorithm behaves very much
the same as the original [27] under the condition that no node fails
and the requesting process receives the token within the time-out. 

When the token does not arrive within the time-out, process j checks if
another node has started the regeneration of the token. If that is the
case, j waits for a message indicating it can reset its time-out and
wait for the token again. When no other node has started the
regeneration procedure, j commences it. It sends a PRIVILEGE_CHECK(j)
message to all nodes and waits for their response. If a response
indicates that the token is not lost, then j sends a message to all
other nodes indicating that it was a false alarm and waits again for
another time-out for the token to arrive.

If a node k receives a PRIVILEGE_CHECK(j) message, it either sends a
REP_CRITICAL(k) message to j if k has the token, or sends a NO_CRIT(k)
message to node j if it has not started a token regeneration procedure.
If node k already started to regenerate the token when a
PRIVILEGE_CHECK(j) message arrives, if j's node number is less than
k's, then node k stops the generation procedure. Otherwise, k ignores
the message.

A process k that has started the regeneration of the token will know
that the token is lost and that no other node is trying to regenerate
it, when it receives no REP_CRITICAL messages and N-2 NO_CRIT messages
(at most one node could have failed and did not respond). It then sends
CREATE_PRIVILEGE(k) messages to all correct nodes and gets an UPDATE
message from each one of them. This message contains enough information
to construct the state of the token's queue of pending requests. Node k 
sends messages to all nodes indicating the recovery of the system and
starts executing its critical section.

The algorithm assumes that transfer delays are finite but unpredictable
and that messages might not arrive in the order they are sent. The
total number of messages exchanged for a critical section entry is
L*N+(N-1) under the absence of failures.

A second algorithm is presented in which a central coordination control
for mutual exclusion is moved among the nodes in the system. At any
given time, there exists only one central coordinator in the system.

Nishio-Li-Manning algorithm. Their algorithm [15] is an extension
of the Suzuki and Kazami algorithm [27], but the movement of the token
is different. The token is granted to the nearest node, in a logical
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circular list, whose last request has not been granted yet, as in [21].

Fault-tolerance, based on time-out values, is incorporated in their
algorithm. It is assumed that each node in the system consists of a
processor and a communication controller. The algorithm can recover
from processor failures, controller failures and communication link
failures. A lost token can be regenerated and duplicated tokens are
eliminated from the system.

The controller of each node k manages message exchanges with other
nodes, controls processor k's right to enter its critical section, and
is able to regenerate a new token if need be. Therefore, state arrays
are stored in the controller's memory. Processor and controller
interact, exchanging information. Based on that information, the
controller can decide to regenerate a new token or eliminate a
duplicated one.

Request messages include the identification of each node to which it is
being sent. A field indicating the age of the token is added to the
token message. Each node keeps the age of the most current unique token
generated in the system. When a process i has sent a request to all
other N-1 nodes in the system, it sets a time-out for the token to
arrive. If the token arrives within this time and its age is not older
or equal to the age value at site i, then it is a duplicated token and
is discarded. The process re-sends its request to all other nodes and
the same procedure is repeated. If the age of the token is at least
equal to the age value at site i, the age value of i is updated and it
can proceed to enter into its critical section.

If the token did not arrive within the time-out, the token regeneration
procedure commences. A TOKEN_MISSING message is sent to all other
nodes. If one of them does not respond, the procedure starts again. If
all other N-1 nodes responded with an ACK message, a new token is
regenerated and an incremented age is given to it. The process now can
proceed to the execution of its critical section. In the case that a
single node replied with a NACK message, the procedure re-starts at the
point where node i sends again its request to all other nodes.

The TOKEN-MISSING message includes an incremented proposed_age field
from node i. ACK and NACK messages also include an age value that
corresponds to the proposed_age in the TOKEN-MISSING message, in the
case of ACK messages, or is different, in the case of NACK messages.
NACK messages help in resolving conflicts among processes that started
the regeneration of a new token, or to indicate that the token has not
been lost. The node with the highest proposed age is candidate to
regenerate the new token. A node k is allowed to regenerate a new token
only if it has received ACK messages, corresponding to its
TOKEN_MISSING enquiry, from all other N-1 nodes. ACK messages contain
j's most current request granted; therefore, the array of most recently
requests granted can be constructed in the new token.

The information stored at the controller is assumed not to be lost in
case the controller fails. Since this is difficult to keep and might
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not be recoverable in a catastrophic controller failure, a mechanism
that uses information propagation is described for the recovery from
these failures.

The algorithm assumes finite transfer delays and does not require
message-order preservation. The number of messages exchanged for a
critical section entry is N. The resiliency mechanism presented can be
easily modified to include the recovery from a node insertion, or
removal. Channel insertion/removal can be treated in the same way as
their failure/recovery.

4.1 Recapitulation of the performance of token-based
algorithms.

Table 1 below shows the performance of the algorithms described above.
The column in the center indicates the total number of messages
required for an entry to the critical section to take effect.

ALGORITHM TOTAL MESSAGES OBSERVATIONS
----------------------- -------------- ---------------------------------------------
Ricart-Agrawala [21] N

Suzuki-Kazami [27] N L * N + (N - 1) for bounded sequence numbers.

Mizuno-Neilsen-Rao [12]
binary tree protocol avg log N Uses quorum agreements.
finite proj. planes 3 * SQRT(N)

Neilsen-Mizuno [14]    D + 1 Uses a Direct Acyclic Graph.
linear topology N
star topology 3

Helary-Plozeau-Raynal [6] Discusses the effect of failures and presents
tree toplogy N to (N-1+D) suggestions for the recovery.
linear topology N to 2(N-1) Uses a knowledge-transfer control technique.
ring topology N to 2N
complete topology N

Raymond [16] 2*D Discusses the effect of failures and gives
avg log N suggestions for the recovery. Uses a static

logical tree structure.

Singhal [24] N Discusses the effect of failures and gives
suggestions for the recovery. Uses state
information and heuristics.

Naimi-Trehel [13] avg log N Considers node failures, and the token
regeneration. The state is not reconstructed.
Uses a dynamic logical structure.

Mishra-Srimani [11] L*N+(N-1) Considers node failures, the regeneration of
the token and the elimination of duplicated
tokens. The system state is reconstructed.

Nishio [15] N Considers processor, communications 
controler and communication link failures.
The regeneration of a token and the
elimination of duplicated tokens. The system 
state is reconstructed.

N = the number of nodes in the system.
D = the diameter of the network (the longest path).
L = an integer value >2, used to bound sequence numbers.
avg = average.

Table 1. Performance of token-based algorithms
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A drawback of the algorithms that use sequence numbers to order the
events in the system, is that the sequence numbers are not bounded.
Suzuki and Kazami [27] proposed a way to bound them, but this
increments the total number of messages in their algorithm to L*N + (N-
1) for L mutual exclusion invocations by a single node.

The algorithms that incorporate fault-tolerance aspects base their
detection mechanisms on the use of timeouts. The resilient algorithms
shown in Table 1 exhibit the performance indicated, under no failures
conditions and the reception of messages within the required timeouts.
It is difficult to analyze their performance under failure conditions
because of the probability that a failure will occur, the inherent
delays in the transmission of messages and the appropriateness of the
size of the timeouts chosen.

In the following section, a description of various permission-based
algorithms is given.

5.- DESCRIPTION OF PERMISSION-BASED ALGORITHMS.

In these algorithms, requesting processes wait to obtain permission
from a set of processes in the system. Once a process obtains
permission from a sufficient number of members in a set, it is allowed
to enter the critical section (CS). Only one process at a time can get
enough rights to execute its CS. Each node grants its permission to
only one node at a time. This ensures the condition for mutual
exclusion.

Two inter-related aspects are considered in these algorithms to reduce
the number of messages exchanged for an entry to the CS to take effect.
The number of "enough" rights that should be collected, and which nodes
should grant those rights. Some algorithms require that a node should
obtain permission from all nodes in the system. In other algorithms,
nodes are divided into groups that intersect with each other in a non-
null pairwise manner. Any possible group must have one node in common
with any other group to ensure mutual exclusion. A node needs to obtain
permission only from all the other members in its group.

Thomas [28] used a voting technique based on a majority consensus
algorithm that requires a requesting node to obtain permission from
only a majority (N+1)/2 of nodes. The intersection of any two
majorities has at least one node in common. This means that for any two
requests that are received, at least one node grants its permission to
one of them, and defers it to the other. Agrawal and El Abbadi [1]
called this consensus the majority quorum.

The concept of obtaining permission from a group of nodes, which are
not necessarily a majority, was formalized by Gifford [5]. He
introduced the notion of quorums, which are nonempty sets of nodes.
Garcia-Molina and Barbara [4] introduced the notion of coteries. A
coterie is a nonempty set of quorums in which any two quorums must have
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at least one common node (intersection property), and no quorum is a
subset of any other one (minimality property).

Agrawal and El Abbadi [1] discuss different protocols to construct
quorums. The unstructured quorum protocol can be used to derive
majority quorums. The grid protocol is used to form a square grid of
quorums as the ones described in Maekawa's algorithm [9]. In the tree
protocol, nodes are logically organized to form a complete binary tree,
and tree quorums can be derived from this structure.

All the algorithms presented in this section claim to satisfy the
mutual exclusion requirement, be deadlock free and starvation free. The
first four algorithms [8, 20, 3, 18] described below, require a node to
obtain permission from all other nodes. The next three algorithms [9,
22, 2] impose a logical structure on the system to group nodes into
sets, and require a node to obtain permission only from the other
members in its set. In the last algorithm [25], a dynamic information
structure is used to form quorums. Algorithms in each group are
presented in chronological order.

Lamport's algorithm. In [8] Lamport describes a mechanism based on
logical clocks for the total ordering of requests in the system. A
timestamp is associated to each request and the order among them is
guaranteed by the following two rules. (a) Each process Pi increments
its logical clock Ci between any two succesive events. (b) Each message
m from process Pi contains a timestamp Tm=Ci(a), where a is the event
of sending the message. When process Pj receives a message m, it sets
Cj greater than or equal to its present value and greater than Tm. This
ensures that if a is the sending of a message by process Pi and b is
the receipt of that message by process Pj, then Ci(a) < Cj(b).

Each process maintains its own request queue. A requesting process
sends a timestamped request to all other N-1 processes and can enter
its critical section when permission from all other processes is
received, and its request is next in its ordered request queue. This
ensures the mutual exclusion condition. A process that receives a
request message sends back a timestamped reply message to the
requesting process. When a process releases its critical section it
sends a release message to every other process to notify that its
request has been granted. Each process in the system receiving a
release message updates its queue of pending requests and checks if it
can proceed to enter its critical section.

When a process i wants to enter its critical section it sends a request
message of the form REQUEST(Tm, i) to all other N-1 nodes and puts that
message in its request queue. When process j receives the request from
node i, it places it in its request queue, updates its Cj and sends a
timestamped reply message to i. When process i receives reply messages
from all N-1 other processes with a timestamp greater than the
timestamp in its request message, and its request is next in its queue,
then it can enter its critical section. When i releases its critical
section, it deletes any request (Tm, i) from its request queue and
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sends a timestamped release message to all other processes. When
process j receives a release message from i, it deletes any request
message (Tm, i) from its request queue.

Requests are served in a first-come-first-served manner. The algorithm
assumes the communications network is fully reliable. Message-order
preservation is required and the total number of messages exchanged for
an entry to a critical section is 3 * (N-1).

Ricart-Agrawala algorithm. In their algorithm [20] a node has to
receive permission from all other N-1 nodes in the system to enter its
critical section (CS). A node wishing to execute its CS sends a request
message to every other node and waits for their permission to arrive.
When a node receives a request, it sends its permission to the
requesting node if either it is not requesting itself or it is
requesting itself, but the other node's request precedes its own. The
sending of its permission is deferred otherwise. Requests are ordered
by using sequence numbers in the system. 

When node i is going to send a request message to all other nodes, it
increments the highest sequence number it has knowledge of and includes
it in its request message. After request messages are transmitted, node
i waits for the arrival of N-1 reply messages to enter its CS. When
process j receives the request from node i, it sends back its
permission if it is not requesting the CS itself, and updates its
highest sequence number value. If node j is requesting to enter its CS
and the sequence number in the request from i is lower than the one in
its own request, then j sends its permission to i. If j is requesting
and its request sequence number is lower, then it defers a response to
i and keeps record of it in its Reply_Deferred[i] array. Ties are
solved by granting the permission to the node with the lowest node
number. When a node releases its CS, it sends its permission to all
nodes for which a reply to their requests was deferred.

The algorithm requires 2 * (N-1) messages for an entry to the CS to
take effect. It assumes the existence of an error-free underlying
communications network.  Message transfer delays are finite, but
unpredictable, and message-order preservation is not required. Requests
are serviced in a first-come-first-served manner.

Carvalho-Roucairol algorithm. Their algorithm [3] is a variation of
the Ricart and Agrawala algorithm [20]. Once a node i has received
permission from a node, it can keep it for future use until a request
is received from that node. The next time node i wants to enter its
critical section (CS), it will send request messages only to those
other nodes whose permission is not already kept by i. This indefinite
permission reduces the number of messages substantially when only a few
nodes are frequently invoking mutual exclusion.

When node k grants its permission to node i, its authorization remains
valid until it wishes to enter its CS again and sends a request message
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to i. When node i wants to enter its CS, it increments the highest
sequence number it has knowledge of and sends a request message of the
form REQUEST(my_sequence_number, i) to only the other nodes which need
to be consulted. Then, node i waits for those reply messages to arrive
to execute its CS. 

When node j receives the request from i, it updates its highest
sequence number known and sends its permission to node i if either it
is not in its CS or requesting it, or is requesting the CS, but the
request sequence number from i is lower than its own. Node j records in
its array[i] that node's i permission is no longer valid. If node j is
either in its CS, or is requesting it and its request is lower than
that from i, then the sending of the permission is deferred. There is
one special case in which node j is requesting the CS, the permission
from node i is still valid, but the new request from i contains a lower
sequence number than its request. Node j records in its array[i] that
node's i permission is no longer valid, sends its permission to i, and
sends a request message to it.

When a node releases the CS, it sends its permission to all nodes for
which a reply to their requests was deferred, and updates its array of
valid permission. The last node entering its CS can reenter it if no
other node requests it. 

The algorithm requires from 0 to 2 * (N-1) messages for an entry to the
CS to take effect. It assumes there is a reliable underlying
communications network. Message transfer delays are finite, but
unpredictable, and message-order preservation is not required.

Raynal's algorithm. Raynal introduces the use of prime numbers for
describing the global state of the system.  In his algorithm [18],
prime numbers are used to order the events in the system. His aim is
not to obtain an efficient algorithm from a number of messages point of
view, but to show that prime numbers and their properties can be a
useful tool in the design of distributed algorithms.

Each node i is endowed with a different attribute Ai. These attributes
are natural integers, different from 1, and pairwise prime. Each node
maintains a variable Xi initialized to Ai except for one Xk initialized
to 1. They also know that Q is the total product of all prime numbers
Ai. When a node i wants to enter its critical section (CS), it sends a
request message of the form REQUEST(i) to all other N-1 nodes and waits
to receive a reply message from all other nodes. Reply messages have
the form REPLY(j, Xj). When all replies have arrived, node i computes
T, the total product of all values Xj received. If T equals Q/Ai, then
node i can proceed to enter its CS. Otherwise, it waits for a time and
then re-sends request messages to all other nodes. When node i releases
the CS, it updates its variable Xi to (Xi * Ai/Aj), where j = (i + 1)
mod N. The permission to enter the CS rotates around a logical ring of
nodes.
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A node updates its variable Xi only after it makes use of the CS. The
effect of this update is that i loses the permission and the next node
in the circular ring obtains the permission. The algorithm can suffer
from deadlock if the next node in the logical ring does not want to
enter the CS; it never updates its variable Xj. Therefore, it never
gives the privilege to another node.

The algorithm assumes the existence of a reliable communications
network. Transmission delays are unpredictable, but finite, and message
order preservation is not required. The number of messages exchanged
has an upper bound of 2(N-1)2.

We propose a modification to the algorithm to avoid deadlock situations
and reduce the number of messages exchanged. At initialization, each
node knows the value of all Xi, and the node endowed with the value
Xi=1 has the permission to enter the CS, the same as in the original
algorithm. Nodes do not need to send request messages. They know the
values of each Xi, and are waiting for the privileged node to release
the CS and update its Xi. The permission from all other nodes is
implicit, except for the permission from the privileged node. Each node
maintains a local variable to indicate whether it is requesting the CS.
When a node i is not requesting the CS, and is the next in the ring to
obtain the permission, it should behave as if it were releasing the CS.
It updates its variable Xi to give the permission to another node. This
avoids deadlocks. After the update, it sends a message of the form
INFORM(i, Xi) to all other N-1 nodes. A node k receiving a message,
computes T to check if it equals (Q/Ak). If it does and the node is
requesting, then it can enter the CS. If it is not requesting, but it
is next, then it behaves as if it were releasing the CS. The total
number of messages exchanged for a CS entry has an upper bound of (N-
1)2 in the worst case, when the next node wishing to enter the CS is
the farthest node in the circular ring from the node currently owning
the permission.

Maekawa's algorithm. Maekawa imposes a logical structure on the
network. In his algorithm [9], a set of nodes is associated with each
node, and this set has a nonempty intersection with every set
associated with each other node. A node i must obtain permission from
all other nodes in its home set Si before it can enter its critical
section (CS). Since the set intersects with every other set of other
nodes, mutual exclusion is guaranteed. Each other node k in Si is
associated with another set Sk for every set in the system. Node k acts
as an arbitrator for requests received from i and also from members of
its home set Sk. Hence, when each node k in Si gives its permission to
node i, then i has collected enough rights and can enter its CS. Each
arbitrator node grants only one permission to one single node. No other
node in all sets Sk in the system will have enough rights and thus, it
will not be allowed to enter its CS.

Requests are ordered by the use of sequence numbers in the system.
Conflicts are solved by requiring a node to yield if its request
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sequence number is larger than the sequence number of any other
request. Ties are solved by favoring the node with the lowest node
number. 

When node i wants to enter its CS, it increments the highest sequence
number known and sends a request message to every other member of Si.
Node i itself pretends to have received a request, since it is also an
arbitrator node.

When receiving a request from i, each node k member of Si checks if it
has already granted its permission. If it has not, it sends its
permission to i. Otherwise, it enqueues i's request in its ordered
waiting queue. If any request in the queue has a lower sequence number
than that of i's, a failed message is sent to node i. If the request
from node i has the lowest sequence number, then an inquire message is
sent to the node to which permission was granted, to check whether this
node has obtained permission from all other members in its home set. If
this node has succeeded, it is free to access the CS. If it has not
succeeded, it cedes its permission to free its member node k to service
a request with a lower sequence number. Node k enqueues the
unsuccessful request. It removes from its queue the request from node
i, and sends it its permission.

When node i obtains permission from all other members of Si, it can
enter its CS. Upon releasing the CS, a release message is sent to all
members of Si. When a release message arrives at node k, it grants its
permission to the next request in its waiting queue. No action is taken
if the queue is empty.

The construction of the sets in the system significantly impacts the
number of messages required to effect an entry to the CS. The rule for
constructing these sets is based on the structure of finite projective
planes of N points. The size of these sets is square root of N. Hence,
a node communicates with only SQRT(N) nodes to obtain permission. The
total number of messages exchanged in a mutual exclusion invocation is
C * SQRT(N), where C is a constant between 3 and 5.

The algorithm assumes the existence of an error-free underlying
communications network. Message transfer delays are finite, but
unpredictable, and message-order preservation is required.

Sanders' algorithm. Sanders introduces the concept of an information
structure as a unifying principle behind several algorithms that have
been proposed [9, 20, 3]. Sanders develops a generalized mutual
exclusion algorithm [22] based on this approach. The information
structure describes which nodes maintain information about the state of
other nodes, and the set of nodes from which each node should request
information or permission before it enters its critical section (CS).
Three sets of nodes are associated to each node i. The informing set
Ii, the request set Ri, and the status set Si. When constructing the
sets, two conditions must be satisfied: a) Ii is a subset of Ri, and b)
for all i and j either there is a non-null intersection between Ii and
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Ij, or both j belongs to Ri and i belongs to Rj. The status sets are
determined by the informing sets where j is a member of Si if i is a
member of Ij.

When node i wants to enter its CS, it must obtain permission from all
other members in Ri. Every other member node k of Ri acts as an
arbitrator to grant its permission to requesting nodes from different
sets for which k is a member. When k sends its permission to a
requesting node which is  a member of its Sk, it sets its variable
CSSTATk to indicate that this node is in the CS. When the node is not a
member of its Sk, then CSSTATk indicates the CS is free. Node k 
arbitrates incoming requests only when it has already granted its
permission to a node in its Sk to enter the CS. Otherwise, according to
its information in CSSTATk, the CS is free and k sends its permission
right away to the next request in its queue of pending requests.

When arbitrating, node k solves conflicts by following a mechanism
based on Lamport's timestamped request messages [8]. When it receives
the request from node i, the request is placed in k's requesting queue.
If the CS is not free and i's timestamp is larger than that of the node
indicated in CSSTATk, then a fail message is sent to i. If i's
timestamp is lower, then an inquire message is sent to the node
indicated in CSSTATk to find out whether it has been successful in
obtaining permission from all other members in its request set. A fail
message is sent to a node with a larger timestamp that has not yet been
sent one. If the CS is free, then the permission is sent to the next
request in the queue and it is removed from it. If the privileged node
is a member of Sk, then CSSTATk is set to indicate that the privileged
node is in the CS.

When node i releases the CS, it sends a release message to all nodes in
Ii. Each member node in Ii sets its CSSTAT to indicate the CS is free.
They  send their permission to the next requesting node in the queue
and the request is removed from the queue.  If the privileged node is a
member of its status set, then CSSTAT is set to indicate which node is
in the CS. They repeat to send their permission until the privileged
node is in their status set, or until the queue is empty.

When a node cedes its permission, it sends a yield message to the node
inquiring. Its request is returned to the requesting queue and the
inquiring node proceeds as if a release message had been received.

The total number of messages required for an entry to the CS to take
effect is |Ii-{i}| + 2(|Ri-{i}|). The algorithm assumes the existence
of a reliable communications network. Message transfer delays are
finite, but unpredictable, and message-order preservation is required.

Agrawal-El Abbadi algorithm. In their algorithm [2], Agrawal and El
Abbadi impose a logical tree structure on the network and use the
notion of coteries. Nodes in the system are logically organized into a
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binary tree structure. A mechanism is used to construct tree quorums
(sets of nodes) derived from the tree structure. The tree quorum
protocol is an alternative approach for the construction of quorums. A
coterie consists of all the tree quorums generated from the binary
tree. Any two tree quorums, members of the coterie, have a nonempty
intersection and none of the tree quorums is a superset of any other
one. A requesting node must obtain permission from all members in a
tree quorum before it can make use of the critical section. The two
conditions that must hold for the tree quorums in a coterie guarantee
the mutually exclusive access to the critical section.

Their mutual exclusion algorithm is similar to Maekawa's [9] and
Sanders' [22]. When a node i wants to enter its critical section (CS),
it determines a tree quorum and sends a timestamped request to all
nodes in the quorum. It then waits to receive permission from all
members of the quorum. Each node maintains an ordered queue of pending
requests. When a request message is at the head of the queue, the node
sends its permission to the node that originated that request. When
node j receives the request from i, it checks if the request at the
head of the queue, if any, has a smaller timestamp. The request from i 
is placed in the queue. If the request at the head (before i's request
was enqueued) has a greater timestamp, an inquire message is sent to
check if the node has been successful in collecting permission from all
other nodes in its quorum. If it has not, it cedes its permission by
sending a yield message to the inquiring node. If it has succeded, it
ignores the inquire messsage. If a yield message is received, node j 
sends its permission to i. When a node releases the CS, it sends a
relinquish message to all nodes in its quorum. Upon the reception of a
relinquish message, a node removes the served request from the queue
and sends its permission to the request at the head of the queue.

All nodes in the binary tree that form a path from the root to a leaf
define a tree quorum. If some node on the path fails, it is replaced by
two paths starting from the children of the failed node and terminating
with the leaves. If a leaf node on a path has failed, then a quorum
cannot be formed.

Under the absence of failures the algorithm requires O(log N) messages
exchanged for an entry to the CS to take effect, and it requires
(N+1)/2 messages when some failures occur. The algorithm incorporates
fault-tolerance by providing several alternative tree quorums to a
requesting node. The algorithm may not be able to form a tree quorum in
some cases after the failure of log N nodes. The algorithm is resilient
to both node and communication failures and can be generalized to
arbitrary trees.

Singhal's algorithm. In his algorithm [25], a dynamic information
structure is used. The information structure at a node changes with the
state of the system as the node receives messages from other sites.
Every node i maintains an information structure which consists of two
sets. The request set Ri, specifies the nodes from which i must obtain
permission to enter into its critical section (CS). The informing set
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Ii, specifies the nodes to which i must send its permission after it
releases the CS. For all requesting nodes i and j, there is a non-null
intersection between Ri and Rj; this guarantees the mutual exclusion
condition. 

Requests are ordered by the use of logical clocks according to
Lamport's rules [8]. A node i must acquire permission from all nodes in
its Ri to enter its CS. The set Ri changes by adding those nodes to
which permission is sent, and by removing those nodes from which
permission is received. The set Ii changes by adding those nodes from
which a request is received when either node i is requesting and its
request has a lower timestamp, or when the request is received when i 
is already in the CS. Nodes to which i sends its permission after it
releases the CS are deleted from the set Ii.

When node i wants to enter its CS, it sends a timestamped request to
all nodes in its Ri and waits to receive their permission. When a
permission is received, the granting node is removed from Ri. When node
j receives the request from node i, it can be either requesting, inside
the CS, or not interested in the CS. When node j is requesting and its
request has a lower timestamp, it adds node i to its Ij set. If its
request has a greater timestamp, it sends its permission to i and if
node i was not in its Rj set, it is added and a request is sent to it.
When node j is in the CS, node i is added to its Ij set. If node j is
neither requesting, nor executing the CS, it sends its permission and
node i is added to its Rj set.

Under light load, the algorithm requires an average of (N - 1) messages
exchanged for an entry to the CS to take effect. Under heavy load, it
requires 3 * (N - 1)/2. The algorithm assumes that message transmission
delay is finite, but unpredictable, and that messages are delivered in
the order they were sent. The underlying communications network is
assumed to be reliable. The impact of message loss and site failures is
discussed and methods to tolerate these failures are proposed.

5.1 Recapitulation of the performance of permission-based
algorithms.

The total number of messages exchanged for an entry to the CS to take
effect can be reduced considerably if the nodes are logically organized
[1]. By constructing intersecting quorums or coteries, mutual exclusion
can be achieved efficiently as in [9], [22], [2], and [25].

Table 2 below shows the performance of the algorithms described above.
The column in the center indicates the total number of messages
required for a node to enter the CS.
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ALGORITHM TOTAL MESSAGES OBSERVATIONS
----------------------- -------------- ------------------------------------
Lamport [8] 3*(N-1)
Ricart-Agrawala [20] 2*(N-1)
Carvalho-Roucairol [3] 0 to 2*(N-1) Indefinite permission.
Raynal [18] 2*(N-1)2 Uses prime numbers.
Maekawa [9] 3*sqrt(N) to 5*sqrt(N) Uses quorums.
Sanders [22] |Ii - {i}| +2(|Ri - {i}|) Uses quorums.
Agrawal-El Abbadi [2] O(log N) Uses tree quorums.
Singhal [25] (N-1) to 3*(N-1)/2 Uses a dynamic information structure.

Table 2. Performance of permission-based algorithms.

Algorithms based on quorums provide more tolerance to faults than other
algorithms [2, 1], because in the case of both node and communication
failures, several alternative quorums are provided to a requesting
node. These algorithms exhibit the property of graceful degradation
[2]. The cost, in messages, of forming a quorum increases as failures
increase, and the probability of forming a quorum decreases.

All the algorithms described in this section, as well as the ones in
Section 4, allow only one node to be in the CS at a time. In the
following section, three algorithms that allow multiple nodes to
execute the CS simultaneously are presented.

6. DISTRIBUTED MUTUAL EXCLUSION ALGORITHMS THAT ALLOW MULTIPLE
PROCESSES TO EXECUTE THE CRITICAL SECTION SIMULTANEOUSLY

In the last two sections, algorithms that allow only one process to
execute in the CS at a time were described. Processes become
sequentialized because they must wait to access a shared resource. In
some cases, multiple processes could be allowed to execute in the CS
simultaneously. Hence, a higher level of concurrency could be attained
in the distributed system.

Raymond [17] and Kakugawa et al [7] developed permission-based
algorithms to allow k nodes to execute the CS at the same time. Srimani
and Reddy [26] use k tokens to allow up to k nodes to execute the CS
simultaneously.

Raymond's algorithm. Raymond [17] extends the algorithm of Ricart
and Agrawala [20] to allow up to k nodes in the system to execute the
critical section (CS) simultaneously. A node is allowed to enter the CS
when at least N - (k - 1) nodes are not executing within the CS. A
requesting node sends a request message to all other N-1 nodes in the
system and waits to receive permission from N-k nodes to enter its CS.
A permission is implicitly received with a reply message. When the
requesting node receives N-k reply messages, it is free to execute its
CS. The remaining k-1 reply messages can arrive at the requesting node
while it is in the CS, or after it has released it. Each node keeps
record of the reply messages received by any other node in the system.
A node i may defer many reply messages to a node j, when i is executing
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the CS and the requesting node j receives a reply from other N-k nodes
while node i is still in the CS. This can occur many times while i is
still executing its CS. When this happens, node i sends a reply message
which contains the number of replies deferred for requests received
from j. 

When node i wants to enter the CS, it sends a request message to all
other N-1 nodes. A request message contains the maximum sequence number
in the system that the node has knowledge of. Node i then waits to
receive permission from N-k nodes. When a reply arrives at node i, it
checks the number of nodes that are not executing the CS, and if there
are at least N-k+1 nodes out of the CS, node i is free to enter the CS. 

When node j receives a request from i, it updates its highest sequence
number known. If j is in the CS, or it is requesting the CS and its
sequence number is smaller than that in i's request, the sending of a
reply is deferred. Otherwise, node j sends a reply message to i. Ties
are broken by favoring the smallest node number. Node j keeps record of
the number of times it has deferred the sending of its permission to
any other node.

When a node releases the CS, it sends a reply message to all other
nodes for which a reply to their requests was deferred. The reply
message contains the number of requests received which are being
replied to.

The algorithm requires at most 2 * (N - 1) messages exchanged for an
entry to the CS to take effect. It assumes the existence of a reliable
communications network. Message transfer delays are finite, but
unpredictable, and the order of reception of messages is unpredictable.

Srimani-Reddy algorithm. Srimani and Reddy developed an algorithm
[26] to allow multiple simultaneous entries to the critical section
(CS). Their algorithm is based on Suzuki and Kazami's algorithm [27].
There exist K tokens in the system to allow K nodes to execute
simultaneously in their CS. K is fixed and 1<= K < N.

Each token contains information about the state of the system. This
information can be updated in each token only when a node possesses the
token. The K tokens are generally updated at different nodes.
Therefore, each token will have different state information about the
system. A major task in this algorithm is to keep the system
information up-to-date.

Sequence numbers are bounded by the use of a large integer L > N.
Because of the unpredictable delay in communication, as well as in the
order of reception of messages, the information about all requests
messages in the "previous bounded round" of any node i must be
synchronized to ensure that they have been recorded in each token in
the system. Each node maintains an array PLN of size N to keep record
of the most recently request serviced for each node. This array is
updated from the information contained in the tokens, and is used to
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update the queue of pending requests in any token. This will prevent a
node from sending an additional token to a requesting node. A node i 
that possesses a token does not know if another node j has sent its
token to the same requesting node to which i will send its own. The
information in PLN prevents a node from sending unnecessary tokens
whenever the information needed is available at the node. Each node
keeps track of the number of tokens it possesses.

When a node i wants to enter its CS and does not hold a token, it
increments its sequence number and initializes the variables for the
"next bounded round," if necessary. Then, a request message (of the
same form as in the original algorithm [27]) is sent to all other N-1
nodes, and i waits for the arrival of a token. Many tokens can arrive
to service the request. When node i wants to enter its CS and possesses
one or more tokens, it is free to enter. Whatever the case, when i can
proceed to enter its CS, it decrements the number of tokens it
possesses and enters its CS. When it leaves the CS, it updates the
information in the token with its current request serviced. If
necessary, it waits for the acknowledgement from all other N-1 nodes
that indicates they all know a "new bounded round" of sequence numbers
will commence for node i. It updates the information in the token it
just made use of and, if there is a pending request in this token's
queue, it sends the token to the requesting node. If no request was in
the queue, node i increments the number of tokens it possesses. 

When a request from i arrives at node j, it increments the request
count for i. When necessary, j updates the information in each token it
holds to indicate the start of a "new bounded round" of sequence
numbers for node i. Also, j sends its acknowledgement to i, when a new
request count will commence. Node j updates PLN[i], and if it holds a
token and is not requesting, or it has a spare token, then the
information in the token is updated and the token is sent it to node i.

A token has the form PRIVILEGE(Q, LN, LT), where Q and LN are the same
as in the original algorithm [27], and LT is an array of size N which
indicates  that all requests from any node i in the "previous bounded
round" have been recorded in the token. When a token arrives at node i,
it updates the information of "new bounded rounds" for any node,
including itself. If it is requesting the CS, it can make use of the
right to enter. Otherwise, it updates the information in the token and
if there is a request in its queue, it sends the token to the
requesting node. If no request is in the queue, node i increments the
number of tokens it possesses. 

The algorithm requires N + K - 1 messages exchanged (L is a very large
integer) for an entry to the CS to take effect. If a node holds at
least one idle token, it can enter the CS without the need to send a
request. The algorithm assumes the existence of a reliable
communications network. Message transfer delay are finite, but
unpredictable, and message-order preservation is not required.

Note: In their algorithm, the condition if RN[i]:=1 in procedure P1,
should be equal to 2 rather than to 1. This typographical error must be
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corrected when reviewing the algorithm.

Kakugawa et al algorithm. Kakugawa et al use the notion of coteries
in their algorithm [7], where k nodes in the system are allowed to
enter the critical section (CS) simultaneously. A coterie is a set of
sets of nodes for which two conditions must hold. The first, is that
any two sets must have a non-null intersection, and the second
condition is that no set is a subset of another one. Each set is a
nonempty set and is called a quorum. All quorums in the coterie
intersect with each other, so when a node receives permission from all
other nodes in its home quorum it is guaranteed that only that node
will be allowed to enter the CS. To allow multiple nodes to execute the
CS at the same time the intersection condition in the coterie must be
modified. 

A k-coterie is an extension of a coterie. To construct a k-coterie,
three conditions must hold. a) For any h quorums (h < k) that have a
null intersection with each other, there exists another quorum that has
a null intersection with one of these h quorums. b) For any k + 1
quorums there exists a pair that have a non-null intersection. c) For
any two distinct quorums, none is a superset of the other. By the
nonintersection property, if less than k processes are in the CS, then
a requesting process can enter the CS by selecting an appropriate
quorum. By the intersection property, at most k nodes can enter the CS
simultaneously.

Kakugawa et al adopted Maekawa's algorithm [9], but a k-coterie is
constructed. When node i wants to enter its CS, it increments the
highest sequence number known and sends a request message to every
other member of an appropriate quorum Qi. An appropriate quorum would
be one that has a null intersection with another quorum. Node i itself
pretends to have received a request. When receiving a request from i,
each member node j of Qi checks if it has already granted its
permission. If it has not, it sends its permission to i. Otherwise, it
enqueues i's request in its ordered waiting queue. Either if the
request granted, or if any request in the queue has a lower sequence
number than that of i's, a failed message is sent to node i. Suppose
that the request from node i has the lowest sequence number, then an
inquire message is sent to the node to which the permission was
granted, to check whether this node has obtained permission from all
other members in its quorum. If this node has succeeded, it is free to
access the CS. If it has not succeeded, it cedes its permission to free
its member node j to service a request with a lower sequence number.
Node j enqueues the unsuccessful request. It removes from its queue the
request from node i, and sends it its permission.

When node i obtains permission from all other members of Qi, it can
enter its CS. Upon releasing the CS, a release message is sent to all
members of Qi. When a release message arrives at node j, it grants its
permission to the next request in its waiting queue. No action is taken
if the queue is empty.



32      

As a simplistic example, assume k=2, N=4 and the quorums in the k-
coterie are q1 = {1,2}, q2 = {1,3}, q3 = {2,4}, and q4 = {3,4}. Two
nodes can execute the CS simultaneously. Suppose nodes 2 and 4 want to
enter the CS, if node 2 chooses q1, it acquires the permission from all
of its members; if node 4 chooses q4, it can acquire the permission
from all of its members and hence, at most two nodes are in the CS
simultaneously. 

The algorithm assumes a fixed k, 1<= k < N. The construction of the
quorums in the k-coterie significantly impacts the number of messages
required to effect an entry to the CS. The message complexity of this
algorithm is O(s), where s is the size of the largest quorum. The total
number of messages required is C * s, where C is a constant between 3
and 5.

6.1 Recapitulation of the performance of multiple entries to
the critical section algorithms.

Table 3 below shows the performance of the algorithms that allow
multiple nodes to execute in the CS simultaneously. The column in the
center indicates the total number of messages required for an entry to
the critical section to take effect for each node.

ALGORITHM TOTAL MESSAGES OBSERVATIONS
----------------------- -------------- ------------------------------------
Raymond [17] 2*(N-1) Permission-based.
Srimani-Reddy [26] 0 or N+K-1 Token-based.
Kakugawa et al [7] 3*s to 5*s Permission-based.

K = number of processes allowed simultaneous access.
s = size of the largest quorum.
 

Table 3. Performance of multiple entries algorithms.

In Raymond's [17] and Srimani-Reddy's [26] algorithms, a major concern
is to maintain the information about the state of the system. In the
former, the algorithm has to take care of replies received which
correspond to a request already serviced. In [26], the information in
the tokens must be updated to avoid sending a token to a request
already serviced and sending unnecessary tokens.

A major task in Kakugawa's et al algorithm [7] is to construct the
quorums for the k-coterie. It is not a trivial task.

7. CONCLUSIONS

In this survey, 21 distributed mutual exclusion algorithms have been
presented. Their principles and characteristics have been described,
and their cost in the number of messages exchanged for an entry to a
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critical section (CS) to take effect has been shown.

These algorithms can be classified into two groups, according to  their
major design approach. These two groups are token-based algorithms and
permission-based algorithms. In the token-based approach, the right to
enter the CS is given by the possession of a special object called "the
token." The singular existence of the token ensures the requirement for
mutual exclusion. The possession of the token implies the right to
enter to the CS.

In the permission-based algorithm, the right to enter the CS is given
by collecting enough rights from all nodes in a set. A node must obtain
permission from all nodes in a particular set to enter the CS. Each
node grants its permission to only one node at a time. Sets must
intersect in a non-null pairwise manner. This ensures the mutual
exclusion condition.

In token-based algorithms, different mechanisms are used for  locating
the token, circulating the token among requesting processes, and for
ordering the events in the system. Token-based algorithms are highly
susceptible to the loss of the token. Complex mechanisms, based on
time-outs, must be executed in order to regenerate a lost token and to
discard duplicates tokens.

In permission-based algorithms, a major concern is to find a minimum
size of a set of nodes from which to obtain permission to enter the CS.
Different structures are used to reduce the overhead of achieving
mutual exclusion. A certain type of structure called coterie reduces
the cost considerably. Coteries provide for a high level of fault-
tolerance as well.

A major task in a distributed mutual exclusion algorithm is to reduce
the number of messages exchanged for an entry to the CS to take effect.
The number of messages can be reduced considerably if the nodes are
logically strutured.

Three of the algorithms presented are designed to allow multiple
processes to execute the CS simultaneously. Hence, a higher level of
concurrency could be achieved.
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APPENDIX A

1 Procedure P1;
2 begin
3   Requesting:=true;
4   if not HavePrivilege then
5     begin
6  RN[I]:=RN[I] + 1;
7  for all J in {1, 2,..., N} - {I} do
8    Send REQUEST(I, RN[I]) to node J;
9  Wait until PRIVILEGE(Q, LN) is received;
10  HavePrivilege:=true;
11     end;
12   Critical Section;
13   LN[I]:=RN[I];
14   for all J in {1, 2,..., N} - {I} do
15     if not in (Q, J) and (RN[J] = LN[J] + 1) then

Q:=append(Q, J);
16     if Q <> empty then
17  begin
18    HavePrivilege:=false;
19    Send PRIVILEGE(tail(Q), LN) to node head(Q)
20  end;
21   Requesting:=false
22 end;

procedure P2; (* REQUEST(J, n) is received; P2 is indivisile *)
begin
  RN[J]:=max(RN[J], n);
  if HavePrivilege and not Requesting and (RN[J]=LN[J]+1)then
    begin

 HavePrivilege:=false;
 Send PRIVILEGE(Q, LN) to node J

    end
end;

Fig. 1. Suzuki and Kazami's algorithm.


