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Abstract. The CSU Face Identification Evaluation System provides standard
face recognition algorithms and standard statistical methods for comparing face
recognition algorithms. The system includes standardized image pre-processing
software, three distinct face recognition algorithms, analysis software to study
algorithm performance, and Unix shell scripts to run standard experiments. All
code is written in ANSI C. The preprocessing code replicates feature of pre-
processing used in the FERET evaluations. The three algorithms provided are
Principle Components Analysis (PCA), a.k.a Eigenfaces, a combined Principle
Components Analysis and Linear Discriminant Analysis algorithm (PCA+LDA),
and a Bayesian Intrapersonal/Extrapersonal Classifier (BIC). The PCA+LDA and
BIC algorithms are based upon algorithms used in the FERET study contributed
by the University of Maryland and MIT respectively. There are two analysis. The
first takes as input a set of probe images, a set of gallery images, and similarity
matrix produced by one of the three algorithms. It generates a Cumulative Match
Curve of recognition rate versus recognition rank. The second analysis tool gen-
erates a sample probability distribution for recognition rate at recognition rank
1, 2, etc. It takes as input multiple images per subject, and uses Monte Carlo
sampling in the space of possible probe and gallery choices. This procedure will,
among other things, add standard error bars to a Cumulative Match Curve. The
System is available through our website and we hope it will be used by others
to rigorously compare novel face identification algorithms to standard algorithms
using a common implementation and known comparison techniques.

1 Introduction

The The System was created to evaluate how well face identification systems perform.
In addition to algorithms for face identification, the system includes software to support
statistical analysis techniques that aid in evaluating the performance of face identifica-
tion systems. The current system is designed with identification rather than verification
in mind. The identification problem is: given a novel face, find the most similar images
in a gallery of known people/images. The related verification problem is: given a novel
image of specific person, confirm whether the person is or is not who they claim to be.

For simplicity sake, the CSU Face Identification and Evaluation System will henceforth
be called the System. The System assumes, as did the earlier FERET evaluation[7], that



a face recognition algorithm will first compute a similarity measure between images,
and second perform a nearest neighbor match between novel and stored images. When
this is true, the complete behavior of a face identification system can be captured in
terms of a similarity matrix. The System will create these similarity matrices and pro-
vides analysis tools that utilize them generate cumulative match curves and recognition
rate sample probability distributions. This document describes version 4.0 of the Sys-
tem that is available through our website[2].

2 System Overview

The System functionality can be split into four basic phases: image data preprocessing,
algorithm training, algorithm testing and analysis of results: see Figure1. Preprocessing
reduces unwanted image variation by aligning the face imagery, equalizing the pixel
values, and normalizing the contrast and brightness. The three algorithms in this dis-
tribution have a training phase and a testing phase. The training phase reads training
data and creates a subspace into which test images will be projected and matched. The
testing phase reads the subspace information, projects images into this subspace, and
generates a distance matrix. Typically the testing phase creates a distance matrix for the
union of all images to be used either as probe images or gallery images in the analy-
sis phase. The fourth phase performs analyzes on the distance matrices. This include
computing recognition rates (csuAnalyzeRankCurve), conducting virtual experiments
(csuAnalizePermute), or performing other statistical analysis on the data.

Sections 3 and 4 describe this functionality in greater detail. Before proceeding to dis-
cuss functionality further, there are four data structures commonly used to pass infor-
mation between components of the System. These are imagery, image sets, algorithm
training configurations, and distances matrices.

2.1 Imagery

The System was developed using frontal facial images from the FERET data set. Im-
ages are stored in an image file that contains pixel values in a binary floating point
format (Big Endian / Sun byte order). The current system generates “.sfi” files. SFI
stands for Single Float Image. Each image file contains a single line (record) ASCII
header that contains the format specifier, “CSU_RASTER”, followed by the column
dimension, followed by the row dimension, followed by the number channels of data.
The remainder of the file contains raw pixel values in row major order. Most images are
single channel, but for multi-channel images the pixel value for channel two follows
directly the pixel value for one, etc. The floating point portion of a single channel SFI
file is identical to the NIST FERET image format. The only difference is our addition
of a header. The The System also supports this NIST format and identifies such images
with a “.nrm” suffix.



Fig. 1. Overview of execution flow for the csuSubspace system, which includes a standard PCA
identification algorithm and also a PCA+LDA identification algorithm.

2.2 Image Sets

It is impossible to run experiments without first identifying sets of images to be used to
train and test algorithms. This distribution includes many common image lists, includ-
ing the training images, gallery images, and four standard probe sets used in the FERET
evaluations. While image lists are always ASCII files enumerating filenames of image
files, they are used to represent training image sets, test image sets, probe image sets
and gallery image sets. When running experiments, it is important to keep track of how
distinct lists are being used. The actual FERET training, gallery and probe set lists are
available at: http://www.cs.colostate.edu/evalfacerec/data.html

2.3 Training Configuration Files

These files contain subspace basis vectors, associated eigenvalues, along with algo-
rithms specific meta-data such as an ASCII copy of the command line used to generate
the training data. The training files are a combination of binary and ASCII data: an
ASCII header followed by binary data. Specifically, the basis vectors are stored as 64
bit floating point values. These files are inputs to the testing algorithms and carry all the
necessary information generated by the algorithm training phase.



2.4 Distance Matrices

Each algorithm produces a distance matrix for all of the images in the testing list. All
algorithms assume that smaller distances are a closer match. In many cases the base
metric will yield a similarity score, where higher scores indicate more similarity. When
this is the case the similarity values are negated to produce a “distance like” metric.
Some examples of this are the Correlation and MahAngle distance metrics in csuSub-
pace, and the Bayesian and Maximum Likelihood Metric in the csuBayesian code.

3 Preprocessing

Preprocessing is conducted using the executable csuPreprocessNormalize. The exe-
cutable performs five steps in converting a PGM FERET image to a normalized image.
The five steps are summarized in Figure2 and an sample normalized image is shown.
The eye coordinates are required for geometric normalization. These are available for
the FERET images from NIST and are included in the System.

Fig. 2. Image Normalization

Our csuPreprocessNormalize code accomplishes many of the same tasks performed by
code originally written at NIST called “facetonorm”. However, it is not identical to the
NIST version. For example, histogram equalization is done only within the unmasked
portions of the face. Our code is more robust and we recommend using it in place of the
NIST version.

4 Algorithms

Version 4.0 of the System comes with three face identification algorithms. These algo-
rithms where chosen because they are well known and had high scores on the FERET



Phase 3 test. The algorithms are intended to perform as a test platform for evaluation
techniques and to serve as a common baseline for algorithm comparisons.

4.1 Principle Components Analysis (csuSubspace/PCA)

The first algorithm released by CSU was based on Principle Components Analysis
(PCA)[5]. This system is based on a linear transformation in feature space. Feature
vectors for the PCA algorithm are formed by concatenating the pixel values from the
images. These raw feature vectors are very large (~20,000 values) and are highly corre-
lated. PCA rotates feature vectors from this large, highly correlated subspace to a small
subspace which has no sample covariance between features.

PCA has two useful properties when used in face recognition. The first is that it can be
used to reduce the dimensionality of the feature vectors. This dimensionality reduction
can be performed in either a lossy or lossless manor. When applied in a lossy manor,
basis vectors are truncated from the front or back of the transformation matrix. It is
assumed that these vectors correspond to not useful information such as lighting varia-
tions (when dropped from the front) or noise (when dropped from the back). If none of
the basis vectors are dropped it is called a lossless transformation and it should be pos-
sible to get perfect reconstruction for the training data based on the compressed feature
vectors.

The second useful property is that PCA eliminates all of the statistical covariance in the
transformed feature vectors. This means that the covariance matrix for the transformed
(training) feature vectors will always be diagonal. This property is exploited for some
distance measures such as L1, MahAngle, and Bayesian based classifiers.

Training PCA training is performed by the csuSubspaceTraining executable. The PCA
is the default mode (it can also perform LDA training). The PCA basis is computed
by the snapshot method using a Jacobi eigensolver from the Intel CV library. The
basis vectors can be eliminated from the subspace using the cutOff and dropN-
Vectors command line options. These methods are described in detail in[9]. The
training program outputs a training file that contains a description of the training
parameters, the mean of the training image, the eigenvalues or fisher values, and a
basis for the subspace.

Distance Metrics The csuSubspaceProject code is used to generate distance files. It
requires a list of images and a subspace training file. The code projects the fea-
ture vectors onto the basis. It then computes the distance between pairs of images
in the list. The output is a set of distance files containing the distance from each
image to all other images in the list. The distance metrics include city block (L1),
Euclidean (L2), Correlation, Covariance, versus Angle (PCA only), and LDA Soft
(LDA only). We have published a study comparing PCA to PCA+LDA using these
different distance metrics[1]



4.2 Linear Discriminant Analysis (csuSubspace/PCA+LDA)

The second algorithm is Linear Discriminant Analysis (PCA+LDA) based upon that
written by Zhao and Chellapa[10]. The algorithm is based on Fischer’s Linear Dis-
criminants. LDA training attempts to produce a linear transformations that emphasize
differences between classes while reducing differences within classes. The goal is to
form a subspace that is linearly separable between classes.

When used in the Face Identification and Evaluation System each human subject forms
a class. LDA training requires training data that has multiple images per subject. LDA
training is performed by first using PCA to reduces the dimensionality of the feature
vectors. After this LDA is performed on the training data to further reduces the dimen-
sionality in such a way that class distinguishing features are preserved. A final transfor-
mation matrix is produced by multiplying the PCA and LDA basis vectors to produce a
full raw to LDA space transformation matrix.

The final output of the LDA training is the same as PCA. The algorithm produces a
set of LDA basis vectors. These basis vectors produce a transformation of the feature
vectors. Like the PCA algorithm, distance metrics can be used on the LDA feature
vectors.

Training Like PCA, LDA training is performed by the csuSubspaceTraining executable.
This algorithm is enabled using the -lda option. PCA is first performed on the train-
ing data to determine an optimal basis for the image space. The training images
are projected onto the PCA subspace to reduce their dimensionality before LDA is
performed. Computationally LDA follows the method outlined by [3]. A detailed
description of the implementation can be found in[4]. The subspace generated us-
ing the -lda option is the composition of the PCA followed by the LDA projection
matrices. LDA generates one fewer basis vectors than there are training classes, i.e.
training subjects.

Distance Metrics The csuSubspaceProject generate distance files for PCA+LDA. Please
see the PCA distance metrics section for more information.

4.3 Bayesian Intrapersonal Classifier (csuBayesian/BIC)

The third algorithm in the CSU distribution is based on an algorithm developed by
Moghaddam and Pentland[6]. There are two variants of this algorithm, a maximum a
posteriori (MAP) and maximum likelihood (ML) classifier. This algorithm is interesting
for several reasons, including the fact that it examines the difference image between
two photos as a basis for determining whether the two photos are of the same subject.
Difference images which originate from two photos of different subjects are said to be
extrapersonal whereas images which originate from two photos of the same subject are
said to be Intrapersonal.

The key assumption in Moghaddam and Pentland’s work is that the particular differ-
ence images belonging to the Intrapersonal and extrapersonal difference images origi-
nate from distinct and localized Gaussian distributions within the space of all possible
difference images.



The actual parameters for these distributions are not known, so the algorithm begins by
extracting from the training data, using statistical methods, the parameters that define
the Gaussian distributions corresponding to the Intrapersonal and extrapersonal differ-
ence images. This training stage, called density estimation, is performed through Prin-
ciple Components Analysis (PCA). This stage estimates the statistical properties of two
subspaces: one for difference images that belong to the Intrapersonal class and another
for difference images that belong to the extrapersonal class. During the testing phase,
the classifier takes each image of unknown class membership and uses the estimates of
the the probability distributions as a means of identification.

Training In the current CSU implementation, the extrapersonal and intrapersonal dif-
ference images for training are generated using the “csuMakeDiffs” program and
subsequently the parameters of the two subspaces are estimated by running PCA
(“csuSubspaceTrain”). This is done independently for the intrapersonal and extrap-
ersonal difference images. Unlike in our earlier distribution, the current distribution
does not include a separate and independent program for training the Bayesian clas-
sifier.

Distance Metrics The “csuBayesianProject” code is used to generate distance files. It
requires a list of images and two subspace training files (one for the extrapersonal
difference images and another for the intrapersonal difference images). The code
projects the feature vectors onto each of the two sets of basis vectors and then com-
putes the probability that each feature vector came from one or the other subspace.
The output is a set of distance files containing the similarity from each image to all
other images. The similarities may be computed using the maximum a posteriori
(MAP) or the maximum likelihood (ML) methods. From a practical standpoint, the
ML method uses information derived only from the intrapersonal images, while the
MAP method uses information derived from both distributions.

5 Standardizing Algorithm Analysis

The primary motivation in developing the System is to analyze the performance of dif-
ferent algorithms. Many publications in the face identification domain compare recog-
nition rates between different algorithms. However, different implementations of even
such apparently simple algorithms as a PCA face identification algorithm can produce
different outcomes, particularly if image preprocessing, training and choice of distance
metric is not controlled. For example, in[1], the comparison of different PCA distance
metrics showed that using PCA with L2 distance can create a false impression that an
alternative algorithm is doing well: our studies as well as FERET, show PCA should be
used with Mahalanobis Angle as the preferred distance metric.

It is therefore important that Our System provides not only standardized algorithms, but
also standardized preprocessing, standardized scripts that include details such as choice
of distance metric, and finally standardized ways of analyzing results. In this section we
will explain in more detail the two analysis tools included in the System.



5.1 Rank Curve Generation

Rank curve analysis was used in the FERET evaluations as one basis for algorithm com-
parison. It provides a method of analyzing recognition rates of an algorithm f recogni-
tion rank. Although this analysis is simple it can provide interesting information not
apparent in a rank one recognition rate. Figures 3 and 4 show the rank curves generated
for the standard FA and FC FERET probe sets. The System comes with a set of Unix
Scripts that run a portion of the original FERET evaluation for the three algorithms in-
cluding all four of standard probe sets. This experiment is not identical to that done in
FERET. Differences include new algorithm implementations, new image preprocessing
code and perhaps most importantly different training image sets. Keeping those caveats
in mind, the script will preprocess the FERET imagery, train the algorithms, run the
algorithms to generate distance matrices, and finally build cumulative match curves for
the standard set of FERET gallery images and each of the four standard FERET probe
image sets. This script is intended as a baseline, or point of departure, for people wanted
understand what was done in the FERET evaluation and wanting to adapt it to their own
purposes.
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Fig. 3. Comparison of the three algorithms on the FB probe set.

5.2 Permuting Probe and Gallery Image Choices

A weakness of comparing recognition rates in cumulative match curves is they lack
standard error bars. The question of what one really wants standard error bars to rep-
resent, and thus how to compute them, can become more involved that at first it might
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Fig. 4. Comparison of the three algorithms on the FC probe set.

appear. We have developed a Monte Carlo based method that is described fully in [1].
An alternative means of computing error bars has been developed by Ross Micheals
and Terry Boult[8]. Our csuPermute code performs virtual experiments using the dis-
tance files. It does this by taking random permutations of the probe and gallery sets
and then performs nearest neighbor classification. It then generates a sample probabil-
ity distribution for recognition rate under the assumption that probe and gallery images
are interchangeable for subjects. Figure 5 shows an example comparing the PCA and
BIC algorithms on a set of 640 FERET images of 120 subjects. Observe that average
performance of the PCA algorithm is higher than BIC, but that relative to standard error
bars derived from the sample distributions, the difference does not appear significant
relative to changes in the choice of probe and gallery images.
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