
Parametric and Nonparametric Methods for the Statistical Evaluation
of Human ID Algorithms

J. Ross Beveridge, Kai She and Bruce A. Draper Geof H. Givens
Computer Science Department Statistics Department

Colorado State University Colorado State University
Fort Collins, CO, 80523 Fort Collins, CO, 80523

Abstract

This paper reviews some of the major issues associated
with the statistical evaluation of Human Identification al-
gorithms, emphasizing comparisons between algorithms on
the same set of sample images. A general notation is devel-
oped and common performance metrics are defined. A sim-
ple success/failure evaluation methodology where recogni-
tion rate depends upon a binomially distributed random
variable, recognition count, is developed and the conditions
under which this model is appropriate are discussed. Some
nonparametric techniques are also introduced, including
bootstrapping. When applied to estimating the distribution
of recognition count for a single set of i.i.d. sampled probe
images, bootstrapping is noted as equivalent to the para-
metric binomial model. Bootstrapping applied to recogni-
tion rate over resampled sets of images can be problem-
atic. Specifically, sampling with replacement to form im-
age probe sets is shown to introduce a conflict between as-
sumptions required by bootstrapping and the way recogni-
tion rate is computed. In part to overcome this difficulty
with bootstrapping, a different nonparametric Monte Carlo
method is introduced, and its utility illustrated with an ex-
tended example. This method permutes the choice of gallery
and probe images. It is used to answer two questions. Ques-
tion 1: How much does recognition rate vary when compar-
ing images of individuals taken on different days using the
same camera? Question 2: When is the observed difference
in recognition rates for two distinct algorithms significant
relative to this variation? Two important general features of
nonparametric methods are illustrated by the Monte Carlo
study. First, within some broad limits, resampling generates
sample distributions for any statistic of interest. Second,
through careful choice of an appropriate statistic and sub-
sequent estimation of its distribution, domain specific hy-
potheses may be readily formulated and tested.

1 Introduction

Due in part to the FERET evaluations [12], much of the
protocol for comparing human identification algorithms, or
at least human face recognition algorithms, has been formu-
lated and standardized. This section will review this formu-
lation and establish the mathematical notation needed to ad-
dress questions of statistical evaluation. This formalization
is essential in so far as it gives all of us working in evalua-
tion a common frame of reference. However, it should not
be taken as all encompassing: inevitably aspects central to
some current and future evaluation tasks will be missing.

Section 2 introduces a compact notation for describing
populations and samples. This notation is summarized for
convenience in Table 1. It also introduces the three critical
image sets used in evaluation: the training set, gallery and
probe set. Section 3 reviews how most human identifica-
tion algorithms are developed such that their performance
depends firstly upon how they are trained and secondly
upon what gallery images they are provided. This section
also reviews the similarity matrix that may be pre-computed
for most human identification algorithms and subsequently
used to efficiently conduct “virtual” experiments. Section 4
formally defines recognition rate, median rank and median
censored rank as distinct performance evaluation metrics.

Section 5 introduces a simple binomial model for the
outcomes of testing recognition algorithms applied to hu-
man identification data. The assumptions underlying this
model are discussed, as well as the practical significance of
violating these assumptions under some common scenarios.
We show how to use this binomial model to formulate and
test hypotheses of the form: “algorithm A is performing
better than algorithm B”. Specifically, McNemar’s test is
provided as a simple, direct test when algorithms are tested
on common data, i.e. paired testing. McNemar’s test is used
in an example comparing PCA to ICA face recognition al-
gorithms on the FERET data.

Section 6 introduces some nonparametric techniques
based upon resampling. In particular bootstrapping and the



Table 1. Notation Summary
Symbol Usage

 Target population of images/people to be recognized.
!i;j The jth image of person i in 
.
W The finite set of images available for performance evaluation; the sampled population.
wi;j The jth image of person i in W .
T Training images, typically T � X
G Gallery images, typically G � X
P Probe images, typicallyP � X
A An algorithm
AT An algorithm trained on T .
ATG An algorithm trained on T and using G as exemplars.
U Union of all gallery and probe sets used for a set of experiments, U � W
ui;j The jth image of person i in U .
� A similarity relation between pairs of images.
�U Pairwise similarity matrix for U .
xi;j A probe image in P .
yk;l A gallery image in G.
L(x) Gallery images sorted by decreasing similarity � to image x.
L` The `th element of L.
�(P ) Recognition rate of an algorithm on probe set P .
r(x) Rank of first correct match for probe image x.
r� (x) Rank censored at maximum value � .
�

r� Median of censored rank r� over probe set P .
b(x) Success indicator function for an algorithm applied to probe image x.
s` The `th randomly selected probe image in the sequence S.
S A random sequence of probe images or a results of indicator function applied to them.
P [e] The probability of some event e.

assumptions underlying it are briefly discussed. In this sec-
tion, it is observed that applying bootstrapping to the par-
ticularly simple dataset consisting of a collection of suc-
cess/failure outcomes leads back to the binomial model de-
veloped in Section 5. Section 7 provides a more detailed ex-
ample of another Monte Carlo resampling procedure based
upon permuting the choice of gallery and probe images. In
this context, a difficulty with the direct application of boot-
strapping is circumvented.

Section 7 illustrates two advantages of nonparametric
methods relative to more traditional parametric methods.
First, it illustrates that sample distributions for relevant
statistics may be obtained directly without a need to know
the exact distribution of the data. Second, this freedom pro-
vides wide latitude to develop domain-specific statistics that
greatly simplify the direct statement of interesting hypothe-
ses. In other words, we can formalize the general hypothe-
sis “algorithm A is performing better than algorithm B” in
the precise manner desired to provide the most interpretable
result.

2 Data

Let 
 denote a target population of images over which
our goal is to characterize algorithm performance. Denote
elements of 
 as !i;j where the subscripts have the follow-
ing meaning: !i;j is the jth image of the ith person. Using
double subscripting highlights the distinction between im-
ages of a single person and images of different people. In
practice, we as evaluators have access to only the sampled
population, a finite set W � 
. For example, when eval-
uating algorithms on frontal face images using the FERET
data set, W contains 3; 816 images of 1; 203 people. Gen-
eralization from W to 
 rests on judgment about the nature
of each and about the sampling process giving rise to W .

When evaluating algorithms, three subsets of W are of
interest:

� The training set T ,

� The gallery set G,

� The probe set P .

This trinary distinction differs from the more common bi-
nary distinction used in machine learning, where one speaks
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of training and test data. Nor does it match the trinary dis-
tinction of training, validation and test sometimes used in
machine learning. The usage of T and P is essentially iden-
tical to that of training and test data in machine learning.
However, the gallery contains exemplars for the people to
be recognized. It has no direct correlate in the common ma-
chine learning nomenclature.

In some cases, T and G may be the same set. In other
words, an algorithm may be trained on a set of images
and then subesquently the trained algorithm may use the
same set as examplars against which to match probe im-
ages. However, this need not be the case. For example, in
the FERET tests in 1996 and 1997, algorithms were typi-
cally trained on a different set of images than those used as
the gallery G.

The actual performance of an algorithm is always rated
relative to how well the images in P are matched to the im-
ages in G. So, for example, performance is perfect on a
given probe set P if every image wi;j 2 P is matchd to an
image wi;k 2 G. In other words, the probe image wi;j is
matched to a different image wi;j of the same person: the
ith person. It follows that G and P should be disjoint, oth-
erwise the problem becomes trivial. Further, while not al-
ways the case, typicallyG contains no more than one image
of each person. More will be said aobut how T , G and P re-
late to algorithm and performance measures in the sections
that follow.

3 Algorithms

How a given algorithmA will behave depends upon how
it is trained and the quality of the exemplars it is given.
Thus, an instance of a class of algorithms, such as a princi-
pal components analysis (PCA) algorithm, is defined in part
by the training and in part by the gallery. For example, the
training phase for a PCA algorithm uses the images in T
to define a subspace in which to operate a nearest neighbor
classifier. The gallery G provides the exemplars for each
of the people to be recognized. For example, in a PCA al-
gorithm these images are projected into the subspace and
become exemplars to which novel probe images are com-
pared by the nearest neighbor classifier. For other types of
face recognition algorithms, the usage of T and G will dif-
fer, but for almost all algorithms they are utilized in some
manner or another. Thus, for any algorithm A, this depen-
dency is indicated by subscripting, e.g. ATG is algorithmA
trained on T and using gallery G.

3.1 Similarity Matrices

Most commonly used recognition algorithms may be
characterized by a similarity matrix that represents the in-
formation used to perform classification. A similarity mea-

sure � is a function

� : W �W ) < (1)

Similarity is used to rank gallery images relative to a spe-
cific probe image. Thus, the best match to a probe image
pi 2 P is the gallery image gj 2 G such that:

� (pi; gj) > � (pi; gk) 8 gk 2 G; gj 6= gk (2)

The only condition the similarity relation � must satisfy to
perform this function is that it must induce a complete or-
der on the set of images W . In practice ties may arise. So
long as ties are rare, it is probably safe to impose arbitrary
choices and otherwise ignore the problem. However, a sim-
ilarity measure that gives rise to ties gives rise to a weak or-
der rather than a complete order, and this in turn leaves the
performance measures such as recognition rate ill-defined.

In most cases, similarity is derived from a distance mea-
sure. For example, a PCA algorithm may define similarity
as follows:

� (wi;j; wk;l) =
1

L1 (wi;j; wk;l) + �
(3)

where L1 is the L1, city block, distance between images
wi;j and wk;l measured in the PCA subspace. The small
constant � prevents the similarity measure from becoming
undefined if L1 is zero.

The FERET studies made extensive use of the fact that
once an algorithm is fixed through training, the similarity
� assigned to a pair of images is a constant. Therefore,
for an algorithm ATG, experiments may be conducted in a
“virtual” fashion. To illustrate, in the FERET studies [12],
most of the results presented utilized one training set, one
gallery, and four probe sets. An algorithm was run once on
the union of all gallery and probe sets and tests were run
using similarity information cached in a similarity matrix.
Formally, the FERET studies used the pooled set of images

U = Gfa [ Pfb [ PdupI [ PdupII [ Pfc; (4)

with corresponding similarity matrix

�U = �(ui;j ; uk;l) 8 ui;j; uk;l 2 U: (5)

A short description of these partitions is given in table 2.
The four probe sets were used in conjunction with the

single gallery set to compare algorithm performance. The
exact images in each of these sets is enumerated in lists
available at [3]. This site also tabulates the overlap be-
tween sets both in terms of people in common and images
in common. All 234 images in the probe set PdupII are also
included in PdubI. This overlap between probe sets in un-
usual. More often, probe sets are disjoint, as is the case with
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Table 2. Five Paritions Used in Most of the FERET 1996/97 Evaluations.

Set Images Description
Gfa 1,196 Images taken with one of two facial expressions: neutral versus other.
Pfb 1,195 Images taken with a other facial expression.
PdupI 722 Subjects taken later in time.
PdupII 234 Subjects taken later in time, this is a harder subset of Dup I.
Pfc 194 Subjects taken under different illumination.
T 501 Training Images, roughly 80 percent from Gfa and 20 percent from dup I.

the other three: the intersection of Pfb, PdupI and Pfc is the
null set.

The matrix �U is useful in several ways. As was done in
the FERET studies, it allows different virtual experiments
to be conducted without running the algorithms again. It
also supports quickly executing many thousands of virtual
experiments associated as required by nonparametric statis-
tical techniques such as bootstrapping [7]. Such nonpara-
metric techniques may compute recognition rates for algo-
rithms subject to thousands of different choices of gallery
and probe images. Using �U , these experiments are con-
ducted without actually running the recognition algorithm,
and in many cases this makes such repetition computation-
ally tractable.

Unfortunately, when variances in performance associ-
ated with changes in the training data T are to be inves-
tigated, this trick of precomputing a similarity matrix �U

breaks down. This is because two algorithm variants, AT1G

and AT2G, trained on different sets T1 and T2, will typically
yield different similarity matrices. So, for example, a PCA
algorithm [10] requires that a new subspace projection be
constructed for each new set of training images.

4 Performance Measures

4.1 Recognition Rate

Recognition rate is a common measure used to evaluate
performance. The first step in defining recognition rate is
defining what it means to successfully recognize a probe im-
age xi;j 2 P . This may be done as follows. For each probe
image xi;j, sort the gallery images yk;l 2 G by decreasing
similarity, yielding a list L = fL1; L2; : : :g. Thus, L1

is the gallery image closest to the probe image xi;j, L2 is
the next closest gallery image, and generalizing, L` is the
`th closest gallery image. An algorithm successfully recog-
nizes the ith person from probe image xi;j if, for the closest
gallery image yk;l = L1, index i equals index k. In plain
English, the algorithm successfully recognizes a person if
the probe image and top ranked gallery image are of the
same person.

The success criterion may be expressed in the form of an

indicator function b. Thus, for an algorithm ATG:

b (xi;j) =

8<:
1 when ATG correctly recognizes

probe image xi;j 2 P
0 otherwise

(6)

The requirement that an image of the same person appear
at L1 may be relaxed such that an algorithm is said to suc-
ceed if an image of the same person appears in the closest �
gallery images in L. This gives rise to a family of indicator
functions b� (xi;j).

For a fixed choice of � , the recognition rate over a probe
set P of size n is:

�� (P ) =
c�
n

where c� =
X

xi;j 2P

b� (xi;j) (7)

What to do in the event of a tie is typically not speci-
fied. When using methods such as PCA, where distances
are measured in high dimensional subspaces using double
floating point arithmetic, ties are unlikely and so seldom
considered. However, one can easily imagine other algo-
rithms where ties might require explicit treatment. There
is a deeper question as to when differences are meaning-
ful, but such questions are not easily answered in the gen-
eral case, and if dealt with for specific choices of imagery,
the analysis techniques employed will resemble some of the
statistical methods set out below.

4.2 Rank and Censored Rank

An alternative to choosing � in the above definition of
recognition rate and then scoring an algorithm as succeed-
ing or failing is to report the rank at which an algorithm
first succeeds on a given probe image xi;j. Using the same
sorted list of gallery images L defined above, let L` = yk;l
be the first gallery image in the sequence that is of the same
person as the probe image xi;j, i.e. index i equals index k.
Thus, if ` is the rank of the first successful match, then the
most obvious rank measure r for evaluating performance on
probe image xi;j is:

r (xi;j) = ` (8)
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At some point, differences between large rank values
don’t matter: missing by 10 may be considered as bad as
missing by 100. This line of thinking gives rise to the cen-
sored rank:

r� (xi;j) = min(r (xi;j) ; � ) (9)

So, for example, r10 is the censored rank where the clamp
is placed at 10. If r10(xi;j) = 1, then probe image xi;j
matches a gallery image of the same person at rank 1. How-
ever, if r10(xi;j) = 10, it implies only that probe image xi;j
matched a gallery image of the same person at a rank value
greater to or equal to 10.

Censored rank is defined relative to a single probe, and
unlike recognition rate, is not defined for a set of probes
P . Some additional summary statistic must be chosen if a
single value based upon censored rank is to be used to char-
acterize performance over a probe set. One such statistic is
the median, and this choice gives rise to the median cen-
sored rank

�

r�

�

r� (P ) = median ([r� (x) 8 x 2 P ]) (10)

Median censored rank exemplifies statistics for which tradi-
tional parametric techniques are of limited value, since the
probability distribution for

�

r� is not typically of a well un-
derstood parameterized form; see section 6.2.

5 Algorithm Testing as Bernoulli Trials

All recognition algorithms considered here are determin-
istic. This follows from the presumption that the distance
between two images is fully defined once algorithm A is
trained on training imagery T . Thus, at the risk of stating
the obvious, ATG either succeeds or fails on xi;j and there
is nothing random or uncertain about it.

Now consider what happens when ATG is applied to a
collection of probe images drawn at random from a larger
population of possible probe images. Let s` denote the `th
randomly selected probe image 1. Suppose that the popula-
tion from which the s` are drawn has the property that

P [b (s`) = 1] = p (11)

In words, this equation states that the probability of algo-
rithm ATG recognizing a randomly selected probe image
s` is p.

To provide some intuition for this model, let us relate
our selection of probe images to a classic and simple ex-
periment. You are given a jar containing a mix of red and

1The switch from double to single subscripting of images is intentional.
The single subscript emphasizes that the index refers to placement in the
collection of randomly selected images. Clearly s ` = xi;j for some i and
j, but random sampling means that which i and j is not known.

green marbles. You reach into the jar and select a marble
at random, record a 1 if the marble is green and a 0 other-
wise. You then place the marble back into the jar. If you
do this n times, you are conducting Bernoulli trials, and the
number of 1’s recorded is a random variable described by a
binomial distribution. The distribution is parameterized by
the number of marbles drawn, n, and by the fraction of all
the marbles that are green, p. The equation for our marble
drawing experiment that is analogous to equation 11 above
is:

P [marble drawn is green] = p (12)

It should be obvious for the jar of marbles that the proba-
bility of any given randomly selected marble being green is
the ratio p of green marbles to the total number of marbles.
Likewise for the randomly selected probe images. Some
fraction p of the probe images in the population of possi-
ble probe images P are correctly recognized by algorithm
ATG.

The fraction p dictates how the indicator function b will
behave over a sequence of independently selected probe im-
ages s`. It also characterizes how the recognition rate de-
fined in equation 7 behaves. Restating this equation for rank
� = 1.

� (P ) =
c

n
where c =

X
xi;j 2P

b(xi;j) (13)

It follows directly from the assumptions above that c is a
binomially distributed random variable,

P [c = k] =

�
n!

k! (n� k)!

�
pk qn�k p+ q = 1 (14)

5.1 Appropriateness of a Binomial Model

This binomial model is extremely simple, and there are
several aspects where further consideration is warranted.
The following discussion may help eliminate some areas of
concern.

5.1.1 Sampling With and Without Replacement

In terms of the mathematically correctness of a model, the
difference between sampling with replacement and sam-
pling without replacement seems fundamental. This is a
concern because most human identification experiments do
not sample probe images with replacement. Thus, the ques-
tion arises as to how a model built upon the assumption
of sampling with replacement may be used in experiments
where sampling is done without replacement.

This concern is of little practical significance. If one
assumes the target population is large relative to the sam-
ple size, then the probability of sampling the same instance
twice is low and the difference between sampling with and
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without replacement negligible. While not always the case,
the norm in human identification experiments is that the
number of samples (probe images) is much much smaller
than the population over which we are attempting to draw
statistical inferences about the performance of a recognition
algorithm.

5.1.2 Some People are Harder to Recognize

Without question, some individual people are harder for an
automated algorithm to recognize than others. Is this a con-
cern for the success/failure model? The answer hinges upon
what one assumes about sampling. If sampling of probe
images is indeed done independently and at random, and if
the sampled population, P , is representative of the target
population, 
, then the fact that some people are harder to
recognize than others is irrelevant. However, one can easily
imaging situations where this is not true.

A helpful way to illustrate that the binomial model pro-
posed above applies even when we know that some indi-
viduals are harder to recognize than others is to extend the
marble example. Instead of selecting a marble from a jar,
consider selecting one from a cabinet with many drawers.
Selection operates by first selecting a drawer at random, and
next selecting a marble from that drawer at random.

Assume different drawers have different fractions of
green and red marbles. Thus, for this experiment, the fol-
lowing is true:

P [marble drawn is green jmarble is drawn from drawer i]
= pi

(15)
However, since the drawer itself is selected at random, this
experiment is equivalent to an experiment where first all the
marbles are poured out of the drawers into a single jar, are
mixed, and then a marble is selected from the jar. Thus, it
becomes equivalent to the earlier experiment. If there are m
drawers with ni marbles in the ith drawer, then the proba-
bility of drawing a green marble from a randomly selected
drawer is a weighted average of the probabilities for each
drawer, i.e.

p = P [marble drawn is green] =
1

m

mX
i=1

nipi

,
mX
i=1

ni

(16)
To finish the analogy, consider that each person in the

probe set corresponds to a drawer, and each image of that
person corresponds to a marble in that drawer. Then, al-
though people have unequal probabilities (p i) of being suc-
cessfully recognized by ATG, the unconditional probability
that ATG correctly recognizes a randomly selected probe
image is p. As long as P is representative of 
, it is not a
problem if there is only one probe image per person inP be-

Outcome of ATG

Outcome of BTG S F
S 73 27
F 2 23

Table 3. Hypothetical summary of paired
recognition data suitable for McNemar’s test.
Here ‘S’ means that the algorithm correctly
identified a probe, and ‘F’ represents a fail-
ure.

cause this argument can equally be applied to the sampling
of P from 
.

Of course, when individual drawer attributes (i.e. the pi)
are known, elementary sampling techniques [4] show that
more powerful tests and estimators than the ones we will
propose can be constructed. However, it is unreasonable in
the human identification context to assume known pi, and it
would eliminate the distinction between probe and gallery
sets if the pi were considered estimable.

5.2 Hypothesis Testing using the Binomial Model

Given the binomial model, a simple and natural approach
for the comparison of performance of two algorithms is Mc-
Nemar’s test [8, 14]. This test is suitable for paired data:
for example, data generated from testing two trained algo-
rithms with the same gallery and probe sets. One can imag-
ine cases where a comparison is made using two indepen-
dent datasets. In this case, standard statistical methods for
comparing two population proportions (eg. [6]) could be
applied.

The paired data from applying two recognition algo-
rithms, say ATG and BTG, to the same set of gallery and
probe images is naturally summarized as in table 3. The
outcomes tabulated here can be labeled as SS, SF, FS and
FF, where SS means both algorithms succeed, SF means
that ATG succeeds and BTG fails, and so on. There were
125 probes in this hypothetical example, of which 73 were
correctly identified by both algorithms and 23 were incor-
rectly identified by both algorithms. The recognition rate
for ATG was 75=125 = 0:60, and 100=125 = 0:80 for
BTG. Clearly, the comparison between the algorithms boils
down to comparing the relative frequencies of SF and FS.

5.2.1 Paired Success/Failure Trials: McNemar’s Test

McNemar’s test begins be discarding those cases where the
outcome is either SS or FF. For the remaining outcomes, SF
and FS, a sign test is used. The null hypothesis, H0, is that
the probabilityof observingSF is equal to that of observing
FS. Let nSF denote the number of times SF is observed

6



and nFS denote the number of times FS is observed. We
are interested in the one sided version of this test, so without
loss of generality consider the alternative hypothesis, HAlt,
to be that P [SF ] > P [FS], i.e. ATG fails less often than
BTG. Under H0, a mismatched outcome (i.e. either SF or
FS) is equally likely to favor ATG or BTG. Therefore, un-
der H0,

P [at least nSF mismatches favor ATG] =
P [at most nFS mismatches favor BTG] =PnFS

i=0
n!

i!(n�i)!
0:5n

(17)

where n = nSF + nFS . This probability is the p-value for
rejecting H0 in favor of HAlt.

5.3 Illustrating McNemar’s Test: Comparing
PCA and ICA

As an example of using a binomial evaluation method-
ology, we compare recognition rates for principal compo-
nents analysis (PCA) and independent components analysis
(ICA) for faces in the FERET face data base. This exam-
ple is a short summary of results presented in [9]. The re-
sults of comparing PCA and ICA on the FERET data set
are given in Table 4. The algorithms are compared by mea-
suring how often a probe image matches the nearest gallery
image. (i.e. the comparison is for rank 1). The distance
measure used was L1 norm for PCA, and cosine for ICA
(as recommended by [1]).

The first two columns in Table 4 indicate the gallery and
probe set respectively. Next the number of correctly recog-
nized images over the total number of images is shown both
as a rational number and a percentage for first the PCA and
then the ICA algorithm. Next, the count for each possible
outcome for the paired tests are shown. The four possible
outcomes are:

SS Both the PCA and ICA algorithm recognize the image.

SF The PCA algorithm recognizes the images and the ICA
algorithm does not.

FS The ICA algorithm recognizes the images and the PCA
algorithm does not.

FF Both algorithms fail to recognize the image.

Finally, the p-value for the null hypothesis H 0 is shown for
each of the four experiments. When p-value is below 0:0001
this is indicated by < 0:0001. Under the binomial model,
all four tests indicate that the PCA algorithm is significantly
better than ICA on every probe set.

5.4 Simplicity of the Binomial Model

The strength of the binomial model for comparing recog-
nition algorithms is its relative simplicity. We are confident
others can quickly understand the nature of the model and
how to perform tests such as McNemar’s as a first order
check on the statistical significance of an observed differ-
ence in recognition performance. That said, the model has
weaknesses.

A weakness of the binomial model is reliance upon as-
sumptions that may or may not be reasonable for a given
experiment. When assumptions are violated, will signifi-
cant errors ensue that in turn lead to false conclusions? As
discussed above, there are circumstances under which vi-
olating an assumption, for example sampling without re-
placement, is not of significant practical concern. However,
under other circumstances, a violated assumption may lead
to erroneous results. Finally, and perhaps most troubling, it
is not always easy for researchers with only modest statisti-
cal training to distinguish between these two cases.

6 Nonparametric Methods Generally and
Bootstrapping Specifically

Computer-intensive nonparametric methods can free us
from limiting assumptions about distributions [5]. This
can be attractive if one does not feel comfortable with the
binomial model. Arguably the most informative data de-
rived from recognition experiments are not binary, and such
data cannot be arranged in a simple contingency table or
analyzed with McNemar’s test. For example, the median
censored rank statistic isn’t suitable for such an analysis.
Also, the simple binomial model we have presented is con-
ditional on the gallery used, but the most relevant conclu-
sions are unconditional. In other words, we usually wish
to draw conclusions about the overall relative performance
of algorithms, generalized from the single (or small num-
ber of) gallery set(s) used in testing. For all these reasons,
we now turn attention to more flexible, nonparametric tech-
niques. These methods represent a means of directly esti-
mating probability distributions for statistics of interest.

We have recently been examining a Monte Carlo method
to estimate probability distribution functions for recogni-
tion rate subject to variation in the choice of probe and
gallery images for a set of 256 individuals in the FERET
data set [2]. Ross J. Micheals and Terry Boult have con-
ducted a related type of non-parametric sampling test using
a technique called balanced-replicate resampling [13].

This section briefly describes bootstrapping in general
and then illustrates bootstrapping on a particularly simple
problem: bootstrapping the distribution of success/failure
counts by sampling a set of succeeded/failed values ob-
tained from running an algorithm ATG on a single probe
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Table 4. Performance of PCA and ICA. The probe sets are ordered easiest (fafb) to hardest (fafc).
PCA ICA Paired Outcomes McNemar’s

Gallery Probe Set Corr/Total Pct Corr/Total Pct SS SF FS FF test p-value
Gfa Pfb 928/1195 78 864/1195 72 824 104 40 227 < 0:0001
Gfa PdupI 277/722 38 255/722 217 60 38 407 35 0:0164
Gfa PdupII 52/234 22 38/234 30 22 8 174 16 0:0080
Gfa Pfc 53/194 27 10/194 9 44 1 140 5 < 0:0001

set. For this particularly simple illustration we observe the
form of the resulting distribution is already known: it is pre-
cisely the binomial distribution discussed above.

6.1 Bootstrapping

In general, a bootstrapping procedure would proceed as
follows. Let S be an i.i.d. sample of size n from a larger
population. Let b� be a statistic, namely b�(S), estimating a
quantity of interest, �. So, for example, � might be the pop-
ulation median and b� the sample median. Bootstrapping al-
lows us to estimate the probability distribution function forb�. (Of course, the distribution of the median is well known,
but in general many statistics have distributions that are dif-
ficult to determine analytically, as exemplified below.)

The distribution is estimated by repeatedly drawing
pseudosamples, S�. Each pseudosample is formed by se-
lecting n elements of S independently, completely at ran-
dom, and with replacement. For each psuedosample S�, a
value for the associated statistic b�(S�) is computed; denote
one as b��. The psuedosampling is repeated many times. A
normalized histogram of the resulting values for b�� will of-
ten be a good approximation to the probability distribution
function for b�. A much more careful and thorough intro-
duction to bootstrapping is given by Efron [7].

6.2 Bootstrapping Performance Measures for
Fixed ATG

In terms of human identification, and recognition rates in
particular, bootstrapping could be applied to the problem of
estimating the probability distribution for recognition rate
given fixed training and gallery sets. Consider again the
success indicator function from equation 6. Given a probe
set P of size n that is representative of a larger population, a
sample of success/failure outcomes for algorithmATG may
be expressed as the sequence:

S = [b (xi;j) ; 8 xi;j 2 P ] (18)

The recognition rate � for a sample S is:

� (P ) =
c

n
where c =

X
s` 2S

b(s`) (19)

where s` is the `th element of the sequence S. Now, to
bootstrap the statistic �, generate 10; 000 pseudosamples S�

from S and, for each, compute ��:

�� (P ) =
c�

n
where c� =

X
si 2S�

b(si) (20)

The normalized histogram of �� values is the bootstrap dis-
tribution for �.

Of course, application of bootstrapping to the recogni-
tion rate problem is somewhat pointless, since it can be
shown analytically that c� is a binomially distributed ran-
dom variable. The bootstrapping in this case amounts to
nothing more than a Monte Carlo approximation to the in-
tegral whose exact value is given in equation 17.

However, there are related statistics whose distribution is
not so easily known. For example, consider bootstrapping
to determine the probability distribution for the median cen-
sored rank statistic,

�

r� , defined in Section 4.2, equation 10.
Again, the procedure would be to draw, say, 10; 000 pseu-
dosamples from the original probe set. For each of these

10; 000 pseudo-probe sets, compute a value of
�

r
�

� . The nor-
malized histogram of these resulting values represents the
bootstrap distribution for median censored rank.

7 Permuting Gallery and Probe Choices

The above example of evaluation methods left the choice
of gallery fixed. Thus, performance variability due to vari-
ations in the gallery were not measured. This makes de-
signing experiments easier, but it understates the amount of
variation that will be seen in practical circumstances where
galleries vary. For many applications, evaluation studies ac-
counting for variation in gallery imagery are more appropri-
ate.

Here we present a summary of a Monte Carlo study de-
signed to compare PCA [11, 10] and PCA+LDA [15] al-
gorithms under varying choices of gallery and probe im-
ages [2]. The algorithm descriptions and data preprocess-
ing steps are omitted here, since the exact nature of the al-
gorithms and data is less important than the methodology
being illustrated. These details may be found in [2].

The study assumes that, under the null hypothesis, each
person’s gallery images are exchangeable, as are each per-
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son’s probe images. Under this assumption, the evaluation
results seen in the actual experiment are distributionally
equivalent to those that would have been obtained in any
hypothetical experiment using different probe and gallery
images for these people. Therefore, by considering the out-
comes of such hypothetical experiments, it is straightfor-
ward to derive the null distribution of the test statistic of
interest.

Initially, we endeavored to design a bootstrapping [7]
study, but difficulties described below led us to instead fa-
vor a different Monte Carlo method. This different method
generates samples that always contain one instance of each
person by permuting the choice of gallery and probe im-
ages.

7.1 The Research Question and Associated Data

Two related questions give rise to the study presented
here:

1. How much variation in recognition rate can be ex-
pected when comparing gallery images of these indi-
viduals taken on one day to probe images taken on an-
other day?

2. Does one algorithm perform significantly better than
another relative to the variance induced by perturbing
gallery and probe images?

We arrived the choice of imagery by noting first that the
complete FERET database includes 14; 051 source images,
but only 3; 819 have the subject facing directly into the cam-
era. Further, of these, there are 1; 201 distinct individuals
represented. For 481 of these people, there are 3 or more
images, and for 256 there are 4 or more images. Being more
precise, of the 256 people with four or more images, there
are 160 where the first pair was taken on a single day, and
the second pair on a different day. Of the images taken on
the same day, the subject was instructed to pick one facial
expression for the first image and another for the second 2

Thus, we have 160 people, 4 image per person, appropriate
for testing the questions posed above.

For training the algorithms, we consider the arguably
most difficult case of precluding any overlap between train-
ing and test data. So, it was decided to use the imagery of
the 225 people for whom there are at least 3, but not 4, im-
ages each for training. Consequently, the PCA algorithm
was trained using 675 images. In keeping with common
practice in the FERET evaluation, the top 40 percent of the
eigenvectors were retained. The LDA algorithm was trained

2It might surprise some readers to note that no further instruction was
given. Specifically the subjects were not coached as to what sort of expres-
sion to adopt, for example smile of frown, happy or sad. So, it is incorrect
to assume anything other than that the expressions are different.

on the same images partitioned into 225 classes, one class
per person. Additional details regarding data preprocessing
and algorithm training appear in [2]

Day 1 Day 2
Expression Expression

Person One Another One Another
0 u0;0 u0;1 u0;2 u0;3
1 u1;0 u1;1 u1;2 u1;3
...

...
...

...
...

159 u159;0 u159;1 u159;2 u159;3

Table 5. Illustrating the organization of the 640
test images organized by person, day and fa-
cial expression.

In order to investigate how recognition rate � � varies
with different choices of probe images P and gallery im-
ages G, we will permute the assignment of images toP and
G. Because our research question concerns algorithm per-
formance for probe and gallery images taken on different
days, our Monte Carlo process must preserve the multiple
day separation property. This is easily done, and the pro-
cess is perhaps best explained by first arraying the test data
W as shown in Table 5. However, before describing the
Monte Carlo technique, let us explain why we did not use
bootstrapping for this study.

7.2 Bootstrapping Recognition Rate is Difficult

An obvious way to perform bootstrapping on the image
data presented in Table 5 is to begin by sampling from the
population of 256 people with replacement. Sampling with
replacement is a critical component of bootstrapping in or-
der to properly infer generalization to a larger population
of people [5]. Indeed, we went down this road a few steps
before encountering the following difficulty.

When sampling with replacement, some individuals will
appear multiple times and these duplicates cause a problem
for the scoring methodology. To see this clearly, it is neces-
sary to go one level deeper into the sampling methodology.
Once an individual is selected, it still remains to select a
pair of images to use for testing: one as the gallery image
and one as the probe image.

For the sake of illustration, assume individual 0 is dupli-
cated 4 times 3. Also assume for the moment that the gallery
image is selected at random from columns 0 and 1 and the
probe image from columns 2 and 3. Thus, one possible se-
lection might be:

f(u0;0; u0;2) ; (u0;1; u0;2) ; (u0;0; u0;3) ; (u0;1; u0;3)g
3Indeed, the chances of at least one individual being duplicated 4 times

is over 99%.
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where the pairs are ordered, gallery image then probe im-
age. The intent with bootstrapping is that when a given pair
is selected, for example (u0;0; u0;3), then the recognition
score should pertain specifically to that pairing. However, it
could easily happen that probe image u0;3 is close to gallery
image u0;1, but not to u0;0. So, strict adherence to the boot-
strapping requirements dictates a near match to u0;1 should
be ignored, and the algorithm should be scored based upon
whether or not u0;0 is in the set of k nearest gallery im-
ages. Clearly this is not how our scoring was defined above.
Making this change alters the measure we are attempting to
characterize, so is not an option. However, if the match be-
tween u0;3 and u0;1 is counted, as would happen with nor-
mal application of the recognition rate defined above, the
bootstrapping assumptions are violated.

It is not immediately obvious how to preserve the recog-
nition rate scoring protocol and simultaneously satisfy the
needs of bootstrapping. The matter is certainly not closed
and we are continuing to consider alternatives. However, for
the moment this problem represents a significant obstacle to
the successful application of bootstrapping and we therefore
turn our energies to a Monte Carlo based approach that does
not require sampling with replacement.

7.3 Permuting Probe-Gallery Choices

As with many nonparametric techniques, the idea of our
Monte Carlo approach is to generate a sampling distribu-
tion for the statistic of interest by repeatedly computing this
statistic from different datasets that are somehow equiva-
lent. In our approach, the key assumption is that the gallery
images for any individual are exchangeable, as are the probe
images. If this is true, then, for example, (u0;0; u0;2) is
exchangeable with (u0;1; u0;2), (u0;0; u0;3), or (u0;1; u0;3).
The statistic of interest is the recognition rate rho� and the
samples are obtained by permuting the choice of gallery and
probe images among the exchangeable options for each of
the 160 people. This might be done by going down the list
of people selecting at random a gallery image from one day
and a probe image from the other as illustrated in Table 6a.

This is an unbalanced sample: not all columns are
equally represented. A balanced sampling is easily obtained
by first permuting the personal identifiers and then using a
fixed pattern of samples for the columns, as illustrated in Ta-
ble 6b. This guarantees equal sampling from all columns.
Most experiments below use balanced sampling. However,
Section 7.6 discusses the empirical difference, which is lit-
tle, and presents an example.

Id. G P
0 u0;3 u0;1
1 u1;1 u1;3
2 u2;3 u2;0
3 u3;1 u3;3
4 u4;2 u4;0
5 u5;1 u5;2
6 u6;2 u6;1
7 u7;1 u7;3
...

...
...

159 u159;2 u159;1

Id. G P
154 u154;0 u154;2
130 u130;0 u130;3

69 u69;1 u69;2
80 u80;1 u80;3

128 u128;2 u128;0
72 u72;2 u72;1
82 u82;3 u82;0
42 u42;3 u42;1

...
...

...
108 u108;3 u108;1

(a) (b)

Table 6. Illustrating unbalanced, (a), and bal-
anced, (b), sampling. These sampling strate-
gies permute the choices of gallery and probe
images. In both tables, the first column is the
integer indicating a person, the second col-
umn is the gallery image and the third column
the probe image.

7.4 Distributions and Confidence Intervals on
Recognition Rate �

As mentioned above, the “virtual” experiments using the
randomly selected probe and gallery sets may be run with-
out running the recognition algorithms themselves if first
the distance matrix �U is computed. This was done once
for the 640 test images in U and each of the following eight
algorithms:

1. PCA using L1 distance.

2. PCA using L2 distance.

3. PCA using angle between normalized image vectors as
the distance measure.

4. PCA using Mahalanobis distance.

5. LDA using L1 distance.

6. LDA using L2 distance.

7. LDA using angle between normalized image vectors
as the distance measure.

8. LDA using soft weighted variant of L2 distance.

The first seven variants are more fully described in [2]. The
eigth uses a weighted distance measure proposed by WenYi
Zhao [16]. Essentially, it is the L2 norm with the modifi-
cation that each dimension is scaled by the associated LDA
eigenvalue raised to the power c. In this test, c = 0:2.
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Figure 1. Rank 1 recognition rate distributions
for PCA and LDA variants.

The balanced sampling described above was used to sim-
ulate 10; 000 experiments where different combinations of
probe and gallery images were selected. For each of these
10; 000 trials, the recognition rate �� for � = 1; : : :10 were
recorded. These 10; 000 values are then histogrammed to
generate the sample distribution for �� . The distribution of
these recognition rates represents a good approximation to
the probability distribution for the larger population of pos-
sible probe and gallery images.

Figures 1 show these distributions for the PCA and LDA
algorithm variants at rank 1. To explain the recognition rate
labels along the x axis, there are only 160 images in the
probe sets. This means not all recognition rates are possible,
but instead recognition rate runs from 0 to 1 in increments of
1=160. To avoid the problem of unequal allocation of sam-
ples to histogram bins, histogram bins are 4=160 = 1=40
units wide. When histogrammed in this fashion, the distri-
butions are relatively smooth and, to a first order, unimodal.

Figure 2. The 95% confidence intervals for
PCA using L1 and Mahalanobis distance.

Looking at the PCA algorithm variants, there is a clear
ranking: Mahalanobis distance, followed by L1 distance,
followed by the remaining two. We will take up shortly
the question of how to further refine the question of relative
performance between these variants. Looking at the LDA
algorithm variants, two things stand out. First, there is very
little difference between them. Second, they are all clus-
tering around recognition rates slightly lower than for the
PCA algorithm using L2 or angle, and clearly worse than
PCA using L1 or Mahalanobis distance.

The simplest approach to obtaining one- and two-sided
confidence intervals is the percentile method. For example,
a centered 95% confidence interval is determined by coming
in from both ends until the accumulated probability exceeds
0:025 on each side. This is best done on the most finally
sampled version of the histogram: one with bin width equal
to 1=160.

Figure 2 shows the 95% confidence intervals obtained
in the manner just described for ranks 1 through 10. To
keep the figure readable, the confidence intervals for only
the PCA algorithm using Mahalanobis and L1 distance are
shown. Keep in mind that these are pointwise intervals for
each rank that are not adjusted for multiple comparisons.
These plots are elaborations of the CMS plots commonly
used in the FERET evaluation with the notable exception
that now intervals rather than single curves are shown.

Both the distributions and confidence intervals call at-
tention to the differences between PCA using Mahalanobis
distance, L1 and the other distance measures. For exam-
ple, based upon the overlapping confidence intervals shown
in Figure 2, one might be drawn to conclude there is no
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significant difference between PCA using L1 versus PCA
using Mahalanobis distance. However, as the next section
will show, there are more direct and discriminating ways to
approach such questions, and simply looking to see if con-
fidence intervals overlap can be somewhat misleading.

7.5 Hypothesis Testing: Is AT Better than BT ?

The question typically asked is: Does algorithm A per-
form better than algorithm B? This gives rise to a one sided
test of the following form. Formally, the hypothesis being
tested and associated null hypothesis are:

H1 The recognition rate �� for algorithm A is higher than
for algorithm B.

H0 The recognition rates are identical for both algorithms.

To establish the probability of H0 a new statistic
D� (A;B) is introduced that measures the signed difference
in recognition rates:

D� (A;B) = �� (A) � �� (B) (21)

The same Monte Carlo method used above to find the dis-
tribution for �� may be used to find the distribution for
D� (A;B). In other words, gallery and probe sets are se-
lected according to the same randomized procedure 10; 000
times and the difference D� (A;B) is computed each time.
Figure 3 shows the distributions for D 1(A;B) for the PCA
algorithm using three pairs of distance measures: Maha-
lanobis minus L1, L1 minus L2 and L2 minus angle.

For two of the differences, Mahalanobis minus L1 and
L1 minus L2, the distribution is highly skewed with respect
to zero. For the Mahalanobis minus L1 case, D1 is equal
to or less than zero only 35 out of 10; 000 times. For the
L1 minus L2 case, D1 is equal to or less than zero only
13 out of 10; 000 times. For the third comparison, L2 to
angle, the distribution is centered more closely about zero.
In this case, D1 is equal to or less than zero 9; 014 out of
10; 000 times. These distributions may be used to test H0.
Table 7 shows the probabilities for the observed differences
given H0. With very high confidence, H0 may be rejected
in favor of H1 for the first two comparisons, and not for the
third. Observe these probabilities derive directly from the
ratio stated above.

At first glance it might appear wise to carry out all 42
possible pairwise tests using D� . However, doing so invites
false associations. The common practice of rejecting H0 at
probability level 0:05 implies that it is very likely that one
will mistakenly reject H0 a few times. Multiple comparison
procedures could be employed to remedy this problem, but
a full analysis of variance [5] would provide a richer model
for inference. In future work we plan to pair the analysis of

Figure 3. Rank 1 distribution for recognition
rate difference.

Alg. A Alg. B P (D1(A;B) < 0)
Mah. L1 0:0080
L1 L2 0:0013
L2 Angle 0:9014

Table 7. Probability of H0 at rank 1 given ob-
served difference in recognition rate.

variance model with the Monte Carlo inferential paradigm
to provide a complete analysis of such experimental data. In
lieu of such a procedure, looking at individual performance
measures and making a small set of salient pairwise tests is
a reasonable strategy.

7.6 Balanced versus Unbalanced Sampling

Section 7.3 indicated that sampling may be done in ei-
ther a balanced or unbalanced fashion. Does the distinction
matter in our context? Figure 4 shows the result of one such
comparison: the recognition rate probability distribution for
the PCA algorithm using Mahalanobis distance obtained us-
ing balanced versus unbalanced sampling. The distinction
does not appear to matter: the two distributions are essen-
tially indistinguishable. The other distributions presented
above were also essentially unchanged when unbalanced
sampling was compared to balanced. More work is needed
to fully explore the implications of the two alternative sam-
pling methods, but at least using the definitions of balanced
versus unbalanced sampling introduced above, the distinc-
tion appears to matter little.
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Figure 4. Distributions obtained using bal-
anced versus unbalanced sampling.

8 Conclusion

A framework for making statistical comparisons be-
tween different human face recognition algorithms has been
presented and two statistical evaluation methods are devel-
oped. The first is a parametric method that equates success
or failure of algorithms on probe images to Bernoulli trials.
The method is simple to use and captures variation arising
from the size of the sample, .i.e., the number of probe im-
ages tested. More precisely, it captures the uncertainty asso-
ciated with estimating the true probability that an algorithm
succeeds based upon a finite number of samples.

The second method is a nonparametric Monte Carlo
sampling technique that samples the space of possible
gallery and probe sets. This method approximates the prob-
ability distribution of a statistic such as recognition rate or
difference in recognition rate. Given a desire in practice
to know how algorithms behave when changes are made to
gallery and probe sets, this latter methodology is arguably
the more interesting.

The use of each method is illustrated with examples
comparing well known algorithm types from the literature.
The first example shows that using the FERET data under
the test conditions specified, a standard PCA classifier per-
forms recognition better than an ICA classifier. The sec-
ond example shows that a standard PCA classifier performs
recognition better than a PCA followed by LDA classifier.
In both cases, there is a literature suggesting the results
should have come out the other way. More work is needed
to better understand these results.

This paper is part of larger effort to understand how cer-
tain common face recognition algorithms behave, and to de-

velop better statistical evaluation methodologies for com-
paring algorithms. A web site is being developed [3] to re-
port progress. The source code for the PCA algorithm and
the PCA followed by LDA algorithm is available through
this site.
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