A Framework for Composable Security
Definition, Assurance, and Enforcement

J. A. Pavlich-Mariscal
Advisors: S. A. Demurjian and L. D. Michel

Department of Computer Science & Engineering
The University of Connecticut, Unit-2155
371 Fairfield Road
Storrs, CT 06269- 2155
jaime.pavlichQuconn.edu, {steve,ldm}@engr.uconn.edu

Abstract. The objective of this research is to develop techniques that
integrate alternative security concerns (e.g., mandatory access control,
delegation, authentication, etc.) into the software process. The resulting
model-driven framework preserves separation of security concerns from
modeling through implementation, and allows security personnel to pick
and choose security concerns to

concerns promotes security assurance, and should result in a reduction
of the security defects in the final system. To achieve separation of con-
cerns at the modeling level, concern-specific languages are defined to cap-
ture alternative security concerns. At the implementation level, aspect-
oriented programming is used to integrate security concerns into an appli-
cation’s code, while preserving modularity. This composition seamlessly
combines the chosen security concerns to realize an application’s security
infrastructure.

1 Introduction

In today’s world, information and its secure access, as managed by software appli-
cations, is a critical asset of organizations. Within the software process, although
some security requirements are addressed at early stages in development, most
are discovered after functional requirements are defined and implemented|3]. Se-
curity concerns added at later stages in the software process, particularly post-
implementation, can increase security defects in an application. For that reason,
realizing security requirements at the earliest stages of the software process is
crucial to deliver software applications whose information is secure, uncorrupted,
and available. A useful technique to achieve this goal is separation of concerns,
to distinguish all important concerns of an application into modular units that
can be developed independently. In order to effectively separate concerns, soft-
ware formalisms must provide decomposition mechanisms that can partition the
software into simpler pieces that are easier to manage, and composition mech-
anisms to join all components together into a final complete system [13]. The
premise is that isolating security specifications from the rest of the application,

and providing adequate composition and decomposition mechanisms for them,
can effectively integrate security into the software process.

To treat security as a separate concern, several key issues must be addressed:

Security modeling: Widespread software modeling languages (e.g., the unified
modeling language, UML), do not specifically target security requirements.
As a result, security is often tangled and spread throughout the design/code.
Modeling languages like UML must be augmented in order to better concep-
tualize security and its relation to the overall design.

Security enforcement: As an application’s complexity increases, so too do se-
curity errors and flaws, particularly for poorly modularized security concerns.
Security requirements, modeled in a separate concern, must be transitioned
to a well-structured enforcement mechanism via programming language sup-
port and techniques that modularize security at the code-level.

Security assurance: Security requirements, modeled by different security con-
cerns, must individually guarantee assurance, i.e., if RBAC is modeled, there
is a guarantee that each defined role will access exactly what is needed and
no more. Further, the composition of security concerns must also be secure.

At the modeling level, related approaches are: [6] proposes an extension to UML
that defines several new stereotypes towards formal security verification of el-
ements (e.g., fair exchange, confidentiality, etc.); [7] defines a metamodel to
generate security definition languages, an instance of which is SecureUML, a
platform-independent language for role-based access control (RBAC); [1] defines
an approach AuthUML that includes a process and a modeling language to
express RBAC policies via use cases; [5] proposes a network enterprise frame-
work using UML to represent RBAC requirements for the framework introduced
in [15]; and, [4] extends UML with both RBAC and mandatory access control
(MAC). All of these approaches model security requirements without consider-
ing the translation to a concrete implementation that preserves separation of
concerns.

Two approaches focused on separation of concerns during development. In [11],
the authors present an example of composition of access control behavior into
an application via the aspect-oriented methods whereas [16] provides a general
framework to incorporate security into software using aspect-oriented program-
ming to manage authentication and intercept method calls to constrain them
based on permissions. Both approaches emphasize composition of security be-
havior into an application, depending on higher-level languages to accurately
represent security concerns: [11] emphasizes security in models, and [16] im-
plements security using aspect-oriented code. Our approach advocates a more
global vision of security comprised of a model for security (the role slice model)
which is integrated with a mapping to aspect-oriented code.

My doctoral research proposes a composable security definition, assurance, and
enforcement via a model-driven framework that preserves separation of security
concerns from modeling through implementation, and provides mechanisms to

compose these concerns into the application while maintaining consistency be-
tween design models and code. At modeling-time, separation of concerns (e.g.,
RBAC, MAC, delegation, authorization, etc.) is emphasized by defining concern-
specific modeling languages. At an implementation-level, aspect-oriented pro-
gramming (AOP) transitions security concerns into modularized code that en-
forces each concern. The material presented throughout the paper assumes the
use of an underlying object-oriented language with aspect-oriented extensions,
and infrastructure to implement the applications and support secure access
to the public methods of classes, e.g., Java with AspectJ[14] or C++ with
AspectC++[12].

2 The Proposed Framework

The proposed framework for composable security definition, assurance, and en-
forcement is given in Fig. 1, and augments the software process at the design and
implementation stages. In the top half of the figure, the design stage is repre-
sented, including the Main Application Design Model (e.g., UML) that contains
all of the domain-specific information about the application (i.e., business rules).
In addition, this design model is augmented with Security Concern Models for
alternative security features, such as access control (e.g., RBAC, MAC, dele-
gation, etc.), auditing, and authorization. When designing an application, the
software/security engineer can pick and choose, as independent concerns, their
required security, e.g., a banking application might use RBAC for customers and
MAC with 4 security levels for banking personnel. The Security Concern Models
contains fine-grained units that are selectable, parameterizable, and compos-
able to handle such a situation. The bottom half of the figure represents the
mapping to the Main Application Implementation, which involves the coding of
an application’s classes, methods, etc., and associated Security Aspect-Oriented
Implementation, which involves an automated mapping to AOP code that real-
izes the chosen Security Concern Models for the application. For this research,
these mappings employ Java and AspectJ, respectively. Composition allows the
AQOP code for the chosen Security Concern Models (e.g., for RBAC, MAC, and
4 security levels) to be combined with the application. The main research tasks
required to realize the framework are:

1. Identify a broad set of Security Concern Models (e.g., RBAC, MAC, delega-
tion, authorization, parameters of security models, etc.) that are both quan-
tifiable units and composable. The objective is to offer a wide range of secu-
rity capabilities to software/security engineers. The main criteria to identify
a composable concern is to determine if its properties can be expressed as
formal method preconditions. For example, in our current research [8,9],
RBAC can be composed into an application, by doing permission checking
as a precondition of the methods that need access control.

2. Design a means to integrate the Security Concern Models into a design model
(UML) to capture security requirements as part of the software process.
This may involve extending existing UML capabilities, proposing new UML
diagrams, and/or integrating with other security modeling techniques.

3. Develop a formal model to represent security and non-security concerns that
captures a design state for use in static analyses of the security properties
of the framework. The formal model is crucial to support security assurance
and track potential security conflicts and inconsistencies.

4. Design formal rules that will govern the mapping of each Security Concern
Model to AOP enforcement code, including the composition of multiple con-
cerns and application code. For example, the conditions required to compose
two security policies (RBAC and MAC), the interpretation of permissions
acquired via inheritance (overload or override), and, the rules that delin-
eate the impact on security concerns when application classes are added,
modified, and/or deleted.

Security
Concern Models
Access Control | | jiting Policy | | Authentication
Policy
Main Application [1]
Design Model
PN N
(2] j=2}
£ £
Q [=%
Q Q
© ©
€ €

Security Aspect-Oriented
3 - Implementation N

i o

Authentication
Aspect

Access Control
Aspect

‘ Auditing Aspect

Main Application
Implementation

Compilation and
Aspect Weaving

‘ Final Application ‘

Fig. 1. Approach for Modeling Security.

3 Expected Contributions and Results

The central contribution expected from this research is a complete framework
that integrates security with the software process, preserves the separation of
security and non-security concerns, and yields applications that are the compo-
sition of application and enforcement code. Specific contributions include:

— Visual and non-visual modeling extensions to UML that represent and inte-
grate all of the Security Concern Models into the software process.

— Strong assurance that the AOP code generated for every individual Security
Concern Model, and for their composition with one another, is secure.

— A formal model to capture security and non-security application concerns, a
design state, leveraged to prove assertions regarding security consistency and
completeness of individual Security Concern Models and their composition.

— Detailed algorithms that map Security Concern Models (and their compo-
sition) into composable AOP enforcement code that preserves separation of
concerns.

A software prototype is being built (see Section 4), and will be utilized for
experimental validation of the research.

4 Research Status

As of this writing, the status of the research plan outlined above is as follow!:

1. Chosen RBAC as the first Security Concern Model, and in terms of UML,
define roles whose positive permissions are a subset of the public methods
of the application’s class library, as reported in [8].

2. Proposed a new UML artifact, the role-slice diagram, that allows a soft-
ware/security engineer to capture the Security Concern Model for RBAC
[8]. The role slice provides an abstraction to collect information on the per-
missions of a role that cuts across all classes in an application.

3. Developed an initial formal model [9] for security and non-security concerns
via a functional notation based on structural operational semantics [10].

4. Designed algorithms for mapping a role-slice diagram to AOP security en-
forcement code [8,9] via model composition [2] to manage role hierarchies.

Lastly, a prototype is being developed in collaboration with a fellow Ph.D. can-
didate and a team of M.S. students based on earlier work described in [8,9].
The prototype integrates the role-slice diagram as well as other security work on
extending UML with RBAC/MAC [4]. The prototype has been implemented as
a plugin of Borland’s Together Control Center, and includes mapping role-slice
information to AspectJ security enforcement code. We note that we are in the
planning stage for transitioning this work into the Eclipse environment.

References

1. Khaled Alghathbar and Duminda Wijeskera. Consistent and complete access con-
trol policies in use cases. In Perdita Stevens, Jon Whittle, and Grady Booch,
editors, UML 2003 - The Unified Modeling Language. Model Languages and Ap-
plications. 6th International Conference, San Francisco, CA, USA, October 2003,
Proceedings, volume 2863 of LNCS, pages 373-387. Springer, 2003.

2. Siobhén Clarke. Composition of object-oriented software design models. PhD thesis,
Dublin City University, January 2001.

3. Premkumar T. Devanbu and Stuart Stubblebine. Software engineering for security:
a roadmap. In Proceedings of the Conference on The Future of Software Engineer-
ing, pages 227-239, 2000.

! it mirrors the tasks 1 through 4 described in Section 2

4.

10.

11.

12.

13.

14.

15.

16.

T. Doan, S. Demurjian, T.C. Ting, and C. Phillips. RBAC/MAC security for
UML. In C. Farkas and P. Samarati, editors, Research Directions in Data and
Applications Security X VIII, July 2004.

. Pete Epstein and Ravi Sandhu. Towards a UML based approach to role engineering.

In Proceedings of the fourth ACM workshop on Role-based access control, pages
135-143, 1999.

. Jan Jiirjens. UMLsec: Extending UML for secure systems development. In Pro-

ceedings of the 5th International Conference on The Unified Modeling Language,
pages 412-425. Springer-Verlag, 2002.

. Torsten Lodderstedt, David A. Basin, and Jrgen Doser. SecureUML: A UML-based

modeling language for model-driven security. In Proceedings of the 5th Interna-
tional Conference on The Unified Modeling Language, pages 426—441. Springer-
Verlag, 2002.

. J. A. Pavlich-Mariscal, T. Doan, L. Michel, S. A. Demurjian, and T. C. Ting. Role

Slices: A Notation for RBAC Permission Assignment and Enforcement. In Proceed-
ings of 19th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, 2005.

. Jaime A. Pavlich-Mariscal, L. Michel, and Steven A. Demurjian. A Formal Enforce-

ment Framework for Role-Based Access Control using Aspect-Oriented Program-
ming. In Lionel Briand and Clay Williams, editors, ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems, Montego Bay,
Jamaica, 2005.

G.D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, CS Department, University of Aarhus, 1981.

Eunjee Song, Raghu Reddy, Robert France, Indrakshi Ray, Geri Georg, and Roger
Alexander. Verifiable composition of access control features and applications. In
Proceedings of 10th ACM Symposium on Access Control Models and Technologies
(SACMAT 2005), 2005.

Olaf Spinczyk, Andreas Gal, and Wolfgang Schroder-Preikschat. Aspectc++: An
aspect-oriented extension to c++. In Proceedings of the 40th International Con-
ference on Technology of Object-Oriented Languages and Systems.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees
of separation: multi-dimensional separation of concerns. In Proceedings of the 21st
international conference on Software engineering, pages 107-119. IEEE Computer
Society Press, 1999.

The AspectJ Team. The aspect;j programming guide.
http://dev.eclipse.org/viewcvs/indextech.cgi/ checkout /aspectj-
home/doc/progguide/index.html, 2003.

Dan Thomsen, Dick O’Brien, and Jessica Bogle. Role based access control frame-
work for network enterprises. In Proceedings of 14th Annual Computer Security
Application Conference, pages 50-58, Phoenix, AZ, December 7-11 1998.

Bart De Win, Bart Vanhaute, and Bart De Decker. Security through aspect-
oriented programming. In Proceedings of the IFIP TC11 WG11.4 First Annual
Working Conference on Network Security, pages 125-138. Kluwer, B.V., 2001.

