
GeoLens: Enabling Interactive Visual Analytics over Large-scale, Multidimensional

Geospatial Datasets

Jared Koontz, Matthew Malensek, and Sangmi Lee Pallickara
Department of Computer Science, Colorado State University, Fort Collins, USA

{koontz,malensek,sangmi}@cs.colostate.edu

Abstract— With the rapid increase of scientific data volumes,

interactive tools that enable effective visual representation for

scientists are needed. This is critical when scientists are

manipulating voluminous datasets and especially when they

need to explore datasets interactively to develop their

hypotheses. In this paper, we present an interactive visual

analytics framework, GeoLens. GeoLens provides fast and

expressive interactions with voluminous geo-spatial datasets.

We provide an expressive visual query evaluation scheme to

support advanced interactive visual analytics technique, such as

brushing and linking. To achieve this, we designed and

developed the Geohash based image tile generation algorithm

that automatically adjusts the range of data to access based on

the minimum acceptable size of the image tile. In addition, we

have also designed an autonomous histogram generation

algorithm that generates histograms of user-defined data

subsets that do not have pre-computed data properties. Using

our approach, applications can generate histograms of datasets

containing millions of data points with sub-second latency. The

work builds on our visual query coordinating scheme that

evaluates geo-spatial query and orchestrates data aggregation

in a distributed storage environment while preserving data

locality and minimizing data movements. This paper includes

empirical benchmarks of our framework encompassing a

billion-file dataset published by the National Climactic Data

Center.

Keywords- [Visual analytics, distributed hash tables, Geospatial

datasets, interactive analysis]

I. INTRODUCTION

Higher resolution displays are useful to understand and

analyze complicated natural phenomena. However, as the

scale of the dataset reaches human perceptual or cognitive

limits, traditional data visualization tools are not efficient

enough for the task of providing an intuitive and interactive

sketch of the dataset. This is especially true for scientific

datasets often used in simulations and analyses. Here,

interactive explorations are a critical tool to develop scientific

hypothesis, explore validity of models, and to reduce the time

between further experiments.

Many datasets are too large to fit in memory or to even be

stored on a single machine. Current data centers comprise

large numbers of machines and the data is dispersed over

them. At this scale, interactive visual analytics is often

limited by the data access capability. Interactive visual

analytics encompasses efficient query evaluation, effective

data transfer, and distributed data processing for

implementing visualization algorithms.

In this paper, we address the problem of scalable and

interactive explorations of voluminous, distributed datasets

using an integrated approach that encompasses visualization

algorithms and efficient evaluation of queries. Our approach

also enables interactive visual analytics techniques such as

brushing and linking over distributed raw datasets. Brushing

and linking refers to the visualization technique that

combines different visualization methods to overcome the

shortcomings of using a single approach exclusively and in

isolation. Users can select a subset of the data item using the

brushing technique, and the user’s brushing actions are

connected via linking. [1, 2] To support this feature, the query

should be expressive enough to represent the relations

between the visual components, and allow for immediate

traversal between multiple views. The system should also

cope with the perceptual limit of the data visualization

autonomously. The visual acuity with high-resolution display

has imposed a perceptual scalability limit [3]. If the

resolution of image is so high that an individual pixel cannot

be seen, an even higher resolution is unlikely to be beneficial,

regardless of how close a user is to a display.

We have explored the brushing and linking over heat maps

and histograms of features. As depicted in Figure 1, here the

targeted dataset is specified as the result of query generated

by users. Since the targeted dataset is customizable, several

dataset properties, such as the max/min or frequency counts,

are not available until the query result is ready. Likewise, the

scale of dataset has a wide range: from few kilobytes to

multiple terabytes. In many cases, the pixel representation is

much more compact than the raw data formats.

GeoLens is a framework for the scalable interactive visual

analytics. To address perceptual scalability over geospatial

datasets, we have developed algorithms for geohash based

self-adjustable data tiles and autonomous histogram

generation. Geohash based self-adjustable data tiles enable

the system to access the required dataset based on the

Figure 1. GeoLens displaying the result of a query encompassing the north-

eastern part of Colorado. Here we see available months and features, as
well as, the current geohash tiles and histogram counts for the month of

February in 2014.

effective resolution of the display automatically. With

autonomous histogram generation, the histogram of a feature

will be generated without having any pre-computed data

properties. We have included comparisons of several well-

known histogram creation algorithms and how effective and

scalable each algorithm is when they are applied in a

distributed storage setting. Our results show that GeoLens

provides sub-second latency to generate histogram for

millions of data points with a reasonable accuracy.

To address the scalability for evaluating this advanced

query in a distributed file system, we have developed a visual

query coordinator. The visual query coordinator generates

query results that are translated into visual components on the

server-side. The visual query coordinator is selected from the

set of available storage nodes and it is responsible for

aggregating values, tracking visualization algorithms, and

ensuring load balancing within the storage cluster.

We evaluated our approach in the context of our Galileo

system [4-7]. Galileo is a scalable storage framework for

managing multidimensional geospatial time-series data for

scientific applications. Galileo stores blocks of multi-

dimensional arrays with temporal and geospatial metadata

alongside the attributes. Users are allowed to query these

datasets by specifying multi-dimensional queries that specify

bounds or wildcards for one or more dimensions

corresponding to the observations/features stored within the

system. Queries supported by Galileo include exact match

queries, range queries, and approximate queries.

A. Scientific Challenges

This paper addresses the problem of interactive visual
analytics over voluminous geospatial datasets. The challenges
involved in accomplishing this include the following:

 The datasets are voluminous and must be dispersed
over a number of distributed storage nodes.

 The use of traditional data visualizations over such
voluminous datasets can incur high latency.

 Existing visualization applications are limited in their
ability to facilitate perceptual understanding of
datasets at this scale.

 Dataset properties such as distribution of features are
unknown and may continuously evolve.

 For the integrated visual analytics technique such as
brushing and linking, the relation between visual
components is complicated and must be customizable
based on the design of the application.

B. Research Questions

Major research questions that we explore in this paper
include the following:

 How can we ensure fast visual query evaluations
over distributed datasets so that we can support
interactive visual analytics?

 How can we adjust the resolution of the image tile
within the user’s perceptual limit?

 How can we provide flexible and expressive system
data structures so that they are amenable for
interactive visual analytics techniques?

 How can we avoid large amounts of data transfers
during visualization and processing? Given the data
volumes involved, the transfer costs can introduce
considerable delays.

 How can we maximize data locality during visual
query evaluations?

 How can we effectively balance query workloads so
that a large number of visual query evaluations can
be performed concurrently?

C. Overview of Approach

The approach described in this paper is based on our

distributed storage framework, Galileo [4]. Galileo is a

hierarchical distributed hash table (DHT) that provides

support for high-throughput management of voluminous,

multidimensional observational data streams. Datasets

managed by Galileo are partitioned and dispersed over a large

cluster of commodity machines using the geohash encoding

scheme to preserve geospatial proximity of data points.

Query evaluations are assisted by memory-resident metadata

graphs at each storage node.

To support perceptual scalability for the geospatial

dataset, GeoLens provides geohash based self-adjustable data

tiles. Based on the user’s display and the zooming actions,

the size of the image tile is translated to the length of geohash

code. In the geohash algorithm, the length of the code

represents the resolution of the geospatial region: a longer

code has higher resolution, and correspondingly a smaller

geospatial grid. No matter what the resolution the client

selects, the final volume of data delivered to the user will be

approximately the same in GeoLens. This feature is directly

related to data locality, because Galileo disperses and stores

the dataset based on the geohash values associated with the

data points. In general, the resolution of geohash used for the

data dispersion tends to be lower than the one used for the

image tile. Generating a single image tile requires minimal

data movements between the storage nodes.

Our autonomous histogram generation is a distributed

algorithm that generates histograms from the dataset without

any pre-computed or preserved data properties. A histogram

represents frequency distribution using rectangles whose

widths represent class intervals and whose areas are

proportional to the corresponding frequencies [8]. Providing

meaningful widths based on the complete data distribution is

critical to achieving an effective histogram display. Since the

targeted data is available only after the initial query result is

ready, the algorithm cannot be performed offline. We have

considered three types of algorithms: the N-Squared rule [9],

the Freedman–Diaconis' choice (Freedman) [10], and

Histogram Bin-width Optimization [11] to find an algorithm

that scales well with acceptable latency and accuracy.

GeoLens utilizes the Freedman algorithm and to provide sub-

second latency for millions of data points.

In GeoLens, we define a visual query as a query that

generates results that are processed by interactive data visual

analytics tools. This involves data query evaluations, data

aggregation, and transforming results to interoperate with the

visual components. The query also involves distributed data

processing such as autonomous histogram generation. To

perform visual query evaluations at scale, we have devised a

visual query coordinator. As soon as the user’s visual query

arrives at Galileo, one of the nodes (usually, the node

containing the largest amount of data points) will act as a

proxy for the client to collect the query results that are image

tiles being generated by the other nodes. This architecture

allows for dispersion of processing loads since the data is

processed at the nodes that hold the data. Data movements

between the storage nodes are reduced because of data

locality during processing. The server-side processing also

reduces the amount of data that needs to be transferred

between client and server while minimizing the amount of

data processing in the client application.

D. Paper Contributions

This paper presents the design of the GeoLens visual

analytics framework for voluminous, multivariate, geospatial

datasets. The paper explores the use of brushing and linking

technique with heat maps and histograms of the time series

features using GeoLens. Our approach addresses the

scalability in terms of the visual perception and distributed

processing. Our distributed algorithm can generate

histograms of dispersed datasets without pre-computed data

properties. Our Geohash based self-adjustable image tiles

algorithm addresses visual perceptive scalability by keeping

the size of the final results minimum and constant. Our visual

query coordinator approach preserves data locality while

minimizing data movements; this allows for faster

visualization. Our evaluations target latency for performing

visual queries at various scales of query results to

demonstrate its feasibility in various settings.

E. Paper Organization

The remainder of this paper is organized as follows. In

section II, we provide a background of this research. In

section III, we describe the query evaluation scheme in

GeoLens. Section IV discusses the brushing and linking

feature over heat maps and histograms. We explain each of

the aggregation methods, and how VisGraph of GeoLens

links these methods. Section V provides related works. A

performance evaluation of various aspects of the system is

presented in Section VI. Finally, conclusions and future work

are outlined in Section VII.

II. BACKGROUND

A. Galileo

For our storage requirements, we utilize Galileo, a

distributed data storage framework for voluminous multi-

dimensional, geospatial, time-series datasets. Data can be

streamed to Galileo from any sort of device designed to

observe facets of our environment, such as sensors or

satellites, and Galileo will handle dispersion and indexing.

1) Network Topology

Galileo is modeled as a distributed hash table (DHT).

However, unlike standard DHTs such as Tapestry [12] or

Chord [13], Galileo employs a two tier hashing scheme for

block distribution among multiple machines, or nodes.

Galileo is a zero-hop DHT, a feature seen in other

implementations such as Amazon’s Dynamo [14], meaning

requests are sent directly to their destination, rather than

visiting intermediate nodes.

Galileo is well suited for storing and processing

voluminous, multivariate datasets containing spatial and

temporal information, and additional features of interest.

Galileo can support a variety of common data formats, such

as NetCDF [15], and can handle a variety of query types,

including both exact-match and range-based queries.

However, unlike other DHTs, Galileo does not use a generic

hashing scheme for data distribution, and instead exploits

geospatial characteristics in the data for distribution.

2) Geohashing

By employing a generic hashing scheme, we can achieve

the desired result of distributing the data evenly across our

nodes. However, we can preserve the geospatial information

in the data, and achieve data dispersion, while grouping

similar points, if we employ a geohash algorithm [16] as our

first-tier hashing scheme. The purpose of the geohash

algorithm is to divide the earth into an arbitrary sized grid,

dependent on the desired precision. Each of the boxes in this

grid is identified with a string. The longer the string, the

higher-level resolution we will have.

For example, the latitude longitude pair of 39.5997° N,

105.0108° W would be bounded by the box 9XJ362VKZ. If

we added more characters to this string and subdivided even

further, we would be narrowing the area of the bounding box

around this point. A geohash of only 12 characters would

have a bounding box smaller than a meter [16], so we can be

as precise as we can like and the geohash algorithm gives us

a deterministic mechanism of data dispersion within the same

group. An example of sub diving a geohash is demonstrated

in figure 2.

This scheme, while giving us the desired effect of grouping

data with similar features, leads the probability of storage

imbalances across nodes in the system [5]. However, if we

Figure 2. An illustration of the recursive subdivision of a geohash bounding
box.

use a second hashing scheme for dispersion within the

group chosen by the geohash, we can achieve a balance. We

do this second tier hashing scheme on a feature of the data.

While the geohashing algorithm is going to present

imbalances in data placement within nodes, the dispersion

between the geohash and SHA-1 algorithm is only 1% [5].

3) Indexing: The Geoavailibilty Grid

Indexing blocks in a distributed environment poses many

interesting challenges. If we use a central index server, this

quickly becomes our single point of failure and contact.

However, if the index is shared across all nodes, this can lead

to increased communication between nodes as they compare

and update state involving the index among themselves.

There are offline solutions such as R-trees[17] available, but

these would leave a large memory footprint if they are

indexing a billion files, not to mention the large amount of

traffic that would be generated after every rebalance. Instead

of these solutions, Galileo employs a Geoavailability grid for

indexing. This grid translates points in space into a coarser

resolution coordinate system. It is described by a vector of

bits, or bitmap, where a bit is set to 1 if information has been

stored in that location, and it is set to 0 otherwise.

Each node in the system keeps a Geoavailability grid of the

location it is responsible for; however, any node in the system

must be able to service any request to any node, regardless of

failures in the system. Geoavailability grids are gossiped

between all nodes. However, they are compressed before

being sent and processed, and have the added bonus of not

needing to be decompressed before being processed. [7]

After spatial information has been indexed in all of the

Geoavailability grids, the system can then evaluate user-

defined geospatial queries in the form of polygons

encapsulating areas of interest. These polygons can be of any

size, and are comprised of a list of latitude and longitude

coordinates. These polygons are decomposed into smaller

polygons if they are too large for current geohash resolution.

For example, if our current resolution is 2 characters long,

and this polygon’s area covers two adjacent geohashes, it

would be split into two different polygons, and treated as

separate queries. These polygons are then consulted against

the Geoavailability grids to find if data may be available and

to eliminate nodes that cannot possibly service this query.

Queries are also evaluated against other local metadata

structures, the metadata graph and feature graph.

4) Metadata and Information Retrieval

Galileo allows users to query the system using features and

feature values, rather than files or directories. This is

accomplished using two data structures that each node

contains in memory, a low-resolution feature graph detailing

the global dataset, and a high-resolution metadata graph used

for local evaluations of data stored on that node.

The low-resolution feature graph is used to reduce the

overall search space when issuing a query. With this feature

graph, queries can be issued to any node in the system, and it

provides a coarse-grain view of all the dataset. This allows

the node to have a global view of where to issue sub-queries

throughout the system that will answer this query.

Nodes that receive this more directed sub query evaluate it

against their local metadata graph. The high-resolution

metadata graph instance at each node is populated with

feature information that node is currently holding in files on

the hard disk. It follows a hierarchical tree-like structure

where each level of the tree corresponds to an indexed

feature, and the leaves of the tree contain the data matching

this path. Traversing this metadata graph from root to leaves

allows nodes to narrow down queries to the relevant files that

have these values along this certain path. However, traversing

from leaf to root tells the node that this certain block has the

feature values described by the path. This tree like structure

allows us to group paths and sub-paths from root to leaf and

hide duplicated data. This graph can be restructured or re-

oriented, such that any query can be answered and the

relevant data files matching this query are acquired, without

ever having to go to disk.

The typical data flow involving these structures is as

follows. A query is sent to any node in the system, and that

node consults its respective feature graph to construct a set of

candidate nodes to evaluate this query. This query is then

forwarded to these nodes where they further evaluate the

query on their local high-resolution metadata graph.

III. DISTRIBUTED EVALUATING VISUAL QUERY

GeoLens allows users to specify their query over raw

datasets stored in Galileo. To support visual analytics over

voluminous datasets in a timely fashion requires an efficient

scheme to first retrieve, and then aggregate, and finally,

navigate query outputs. To support these distinctive

requirements, we evaluate visual analytics queries and

process the corresponding query results on the storage nodes

prior to delivery to the application. Our concurrent data

processing allows the visual analytics application to interact

directly with the dataset, rather than limit interactions to the

pre-processed dataset.

A. Self-adjustable Image Tiles and Data Locality

As depicted in Figure 2, Galileo uses the Geohash

algorithm to partition the dataset over multiple storage nodes.

Each storage node is responsible for a set of geohashes;

portions of the dataset corresponding belonging to the same

geohash are stored on the same machine. Finer resolution

image tiles are represented by finer resolution geohashes and

this is naturally aligns data dispersion in Galileo. Therefore,

data processing, such as aggregation, involves reduced data

movements between storage nodes.

 Adjusting the resolution of the image tile relies on the

Geohash algorithm. Applications can increase this resolution

by increasing the length of Geohash string. The longer the

string, the smaller the size of the image tiles. With a Geohash

string of 12 characters, the image tile represents 1 meter x 1

meter area. This enables the application to provide an

effective minimum image tile size to the users.

 The minimum image tile size is specified based on the

maximum resolution supported by the device, and it is then

translated to the corresponding Geohash resolution. When a

user zooms-in to the image or zooms-out of the image, the

image tile size and the Geohash resolution are re-calculated

accordingly. For instance, if a user zooms-in to the image of

the query results, the application increases the length of the

Geohash string until it reaches the minimum image tile size.

In contrast, if a user zooms-out of the image, the application

merges the image tiles by reducing the length of the Geohash

string.

B. Visual Query Input

We are faced with the need for geocoding, which is the

process of translating a human readable name, such as Fort

Collins, Colorado, United States, into its location on the

earth. There are many geolocation services available such as

geonames [18]. However, this is an online database and we

do not want to rely on someone’s network we have no control

over. There are some offline solutions such as the NGA earth-

info [19] but these are large files and require processing.

Additionally, the output of these processes is a latitude and

longitude pairs, denoting the center point of this area. We

would need additional software to then find the series of

latitude and longitude coordinates that bound this area.

To overcome this problem, and to receive a query area,

we allow the user to draw their area they want directly on the

map. GeoLens can also save polygons users have submitted

so they do not need to be drawn again.

The features a user is interested should be included in the

visual query. Galileo provides all of the features it is currently

indexing, and the user can select all of the features they would

like to examine. This polygon and the list of features are then

sent to any node in Galileo to be examined.

C. Distributed Query Evaluation

As depicted in Figure 3, when a query arrives at any node,

it follows the usual protocol of first consulting its

Geoavailability grid and feature graphs to find potential

groups that contain the information about this query.

This visual query is then distributed to all groups that

have data that falls within this query area. This can be one

group if that area is small, or multiple groups if the area is

large, it depends on the size of the polygon and the volume

of the data currently stored. The sub-polygons are generated,

and these sub polygons are sent to the respective groups.

GeoLens instructs Galileo to select a visual query

coordinator to evaluate a visual query. Most of the cases, the

receiving node in the group plays the role of the coordinator.

If the memory consumption and CPU utilization of the

receiving node are higher than the configured thresholds, the

receiving node pushes the request to the next node in the

group. In Galileo, for a degree of replication N, there are N-

1 other nodes in the group that are responsible for storing a

copy of the same data item. This allows data locality to be

preserved within the group.

The coordinator evaluates the user’s query, orchestrates

data aggregation and builds a VisGraph that is the

representation of the visual query results. VisGraph is the set

of all sub features such as heat maps and histograms. The

coordinator issues the user’s query to Galileo as if it is a

regular Galileo query. The result of the query (a metadata

graph) is used for planning further data processing. The

coordinator retrieves the data locations from the result

metadata graph and determines the node that will perform the

partial data aggregation.

D. Data Aggregation for Visual Analytics

GeoLens provides several data reduction methods. Users

can specify their own data reduction algorithms by using

UDF (User Defined Function). Galileo has support for the

sampling operator as a part of regular query.

The most popular data reduction techniques include

filtering [20], sampling [21], and binned aggregation [22].

Filtering and sampling techniques are effectively used on the

entire dataset to give us a more manageable subset in which

to visualize. However, there is no native guarantee in the

sampling algorithm that the sample we get is small enough to

Figure 3 - A graphic depicting the message and data flow within Galileo and GeoLens showing data structures within a node, as well as evaluation at the Visual

Query Coordinator.

fit within our visualization, so additional sampling might

need to be done unless we are intelligent about our sampling.

Another issue with sampling is it may omit outliers. Since

every point has the same probability of being sampled, [21]

we might omit important structures from the data simply

because we got unlucky during our sampling. We can use

some other form of sampling besides random sampling such

as stratified sampling, or systematic sampling. However,

these methods require prior knowledge of the structure of the

data, and costly pre-processing.

Another data reduction technique is aggregation, or the

creation of histograms describing the data. A histogram

represents frequency distribution using rectangles whose

widths represent class intervals and whose areas are

proportional to the corresponding frequencies [8]. We

support aggregation because it shows global patterns through

spike height, and still preserves local outliers because it takes

into account the entire data set. We include detailed

information about our autonomous data aggregation scheme

in Section IV.

E. Creating the VisGraph

A VisGraph is a metadata graph of the visual query

results. As depicted in Figure 4, the Galileo metadata graph

of a regular query contains pointers to the actual file location

in its leaf nodes. The GeoLens coordinator transforms the

metadata graph into a VisGraph. Unlike the metadata graph

in a regular query result, the VisGraph includes aggregated

values and histogram summaries that simplifies image

rendering.

Visual analytics applications are required to render

related images rapidly. For example, for a user who views

and contrasts daily heat maps of temperatures in the US for

March-2014, the application might need to render heat maps

for any of the 31 days in March of 2014. To allow the users

to traverse daily heat maps, the application will need to

traverse among leaf nodes of the VisGraph. In general, the

cost of traversal between the leaf nodes is O(log N), where N

is the number of nodes in the VisGraph. To reduce the

traversal cost, we organize the VisGraph based on the

probability of leaf nodes being co-visited. The leaf nodes that

have the highest chance to be visited together will share the

same parent node. Finally, internal nodes closer to the root

node indicate that traversal to those nodes is the result of a

major feature change in the application.

The first step in creating a VisGraph from a metadata

graph is to first split the paths based on date. Our separation

technique is first to separate the data based on year, and then

month, and then day of the month. Then, for every day of the

month in every year, a histogram and geohash tile set are

created for every feature. This is achieved by simply

traversing the metadata graph and simply populating the new

VisGraph with values that are in this particular month.

IV. BRUSHING AND LINKING

Brushing and linking combines different visualization

methods to overcome shortcomings of using a single

approach over large, complex dataset. In this paper, we have

explored brushing and linking over heat maps and histograms

of features using visual queries and VisGraph.

In order to enable brushing and linking on the client side,

we created two different aggregations the data matched by

the query. We aggregate the data in two different dimensions,

and create two data structures sketching different facets of the

data: feature histogram and heat maps

A. Autonoumous Histogram Generation

Aggregation, or binning, is the process of organizing the

data into defined bins, and then counting each data point that

falls into each bin. All of the features we examine in this

paper are numeric, which leads to our aggregation technique

being a set of uniform width bins, from the minimum value

to the maximum value, for all of the features.

The biggest challenge here is bin width selection for the

unknown dataset. The data is voluminous, and new data is

continuously being added to the existing dataset. Users

specify portions of the dataset to be visualized interactively.

Information such as data distribution (including density of

values) of the dataset is not known to the system.

There are a variety of ways we could obtain a bin width

with which to aggregate data. A simple way would be to

prompt the user. This would not be ideal because different

features will have different widths, and the user might not

know a good width for all of these features. In addition, the

same features, but in different areas, could require different

bin sizes. For example, an area that regularly experiences

cold climates might not need the same guidelines as an area

that experiences warm weather. Lastly, the same area might

have different optimum bin widths, depending on the time of

year. These reasons, coupled with the importance of the

correct bin size described earlier, we do not leave it up to the

user to supply our system with a value. Instead, we derive a

bin width based on the data.

In order to create our histograms from the data, we need to

establish two variables: the number of bins, and the width of

Figure 4 - An illustration of the transformation of a metadata graph to a

VisGraph.

those bins. The width of the bin is crucial to creating a

histogram that best represents the data.

1) Bin Size Prediction

Our goal is to establish a histogram that best captures the

underlying rate of our data. If we choose a width that is too

wide, there are not enough bins to accurately portray the data.

On the other hand, if the bin width is too narrow, we do not

achieve the desired effect of reducing the data size. We need

to find a width that both represents the peaks in our data, and

gives us sufficient data reduction.

This issue has been addressed at smaller scales; however,

when data is voluminous, the turnaround times for bin size

prediction should be rapid enough so that it is applicable to

interactive applications such as GeoLens.

Our goal is to achieve a bin size that provides

approximately optimal width and also scales well with

voluminous data stored in the distributed storage cluster. In

order to find this algorithm, we compared and contrasted

three different methods of obtaining the number of bars for a

histogram: the N-Square method [9], the Freedman-Diaconis

rule [10], and the optimal bin size algorithm from Shimazaki

[11].

The N-Square method simply takes the bin size as √𝑛 ,

where n is the number of points in the dataset. This is the most

efficient method, but does not consider any aspect of the data

other than the size. The Freedman-Diaconis rule takes into

account properties of the data when creating the histogram. It

does not simply look at the size of the data, but also considers

the distribution of the data. It does this by considering the

interquartile range of the dataset, it is based off of Scott’s

normal reference rule [23], but is less sensitive to outliers

because it uses the IQR rather than the standard deviation. By

IQR we mean the interquartile range of the set.
The optimal histogram algorithm from Shimazaki attempts

to calculate the peaks of the underlying data, and then picks

a histogram that most resolves that peak. It does this by

minimizing an estimated risk function. This algorithm finds

the histogram that best describes the data, however, it is very

expensive.

These algorithms are vastly different in how they arrive at

the number of bars and their complexity. Figure 5 and 6 show

our experiment on aforementioned approaches.

2) Comparison of Histogram Generation Methods

In order to decide which one of these generation methods

we would use for our histogram creation, we looked at two

different factors: their scalability with large data sizes, and

the similarities in their output.

The optimal histogram generation algorithm picks a bar

width that best describes the spikes in the underlying rate. It

shows the smallest error between the underlying rate and its

histogram. It gives the best value for the number of bars. The

Freedman method does not do this, however it gives similar

results, as depicted in Figure 5. The optimal histogram

algorithm gives us the best results, however, we have

discovered that this algorithm is not useable in the realm of

big data. It is extremely expensive as shown in Figure 5.
One way we could mitigate the cost of this algorithm is by

sampling from our larger dataset. However, this algorithm

depends on three different variables, the minimum min x, the

maximum max x, and the number of data points in the dataset

n. In our sample, we would need to make sure to sample the

maximum and minimum values, which would no longer

make it a random sample. In addition, since this algorithm is

dependent on the size of the data set, our sample can, and very

likely will, generate a different bin size than it would if it

worked on the entire dataset. Since this value is different than

the optimal one for the entire dataset, it is no longer optimal.

The Freedman algorithm produced very similar bin sizes to

the optimal bin-size algorithm. This is demonstrated in figure

6. Even though the Freedman does not pick the same bin-

sizes as the optimal one, it oscillates around its values. That

is why for its speed over time, coupled with the fact it chooses

Figure 6 - The number of bars each method creates, dependent on the
number size of the data. As the square root method soars off, the optimal

and Freedman methods remain very similar.

Figure 5 - The creation time of the three different methods. Even with

only 5000 points, the scalability of the optimal histogram generation

comes into question, but the other two methods scale.

similar bin sizes, regardless of data size, we have chosen to

use the Freedman-Diaconis rule as the method to

autonomously generate histograms.

B. Heat maps

The geospatial aggregation process benefits from the

strategy used in the self-adjustable data tile scheme. Merging

and separating geohash boxes are done by adjusting the

length of hash code string. Geospatial aggregation in heat

maps requires minimum data transfers between the storage

nodes because the data partitioning that happens in the

storage system is closely aligned to the image tiles that will

be displayed.

1) Minimum Acceptable Geohash Size

When a query is submitted into any node in Galileo, the

geospatial coverage is specified as a form of a polygon. If this

polygon covers more than one geohash area rectangle at the

current resolution, the polygon is split into different polygons

for evaluation at different nodes. After these sub-polygons

are sent to the correct nodes, GeoLens harnesses this sub-

polygon by first finding all of the geohashes that are inside of

this polygon, and are two characters (configurable value)

longer than the current global resolution. In this way we have

a bounded size on the geospatial aspect of our geospatial

visualization. It is bounded both in the max amount of

geohash tiles we create, and is guaranteed to give us enough

geohash boxes, without overloading the user’s ability to

perceive it.

2) Creating the Geohash Dictionary

After all the geohashes that reside inside of this polygon

are found, GeoLens creates a dictionary with geohash values,

and populates it with values from the data that are inside of

this box. We already have a sketch of all the data values in

this entire area surrounded by the polygon, so we need to

create one for just the values inside of this polygon. This is

done by averaging the values in this box, and reporting this

average as the value for this geohash area. This creates a

dictionary of the geohashes in this area, and a snapshot of

those values in that area.

C. Linking Between Heat Maps and Histograms

Brushing and Linking requires fast interactions between

different summarized views of the same dataset. When a user

changes one of their views, the other view associated with the

modified view should be immediately rendered. GeoLens

links different views of dataset through VisGraph. Heat maps

and histograms are linked by sharing ancestor nodes in a

VisGraph.

V. RELATED WORKS.

A. Traditional Techniques (Visualization Systems):

There exist many tools available now for visualizing

geospatial data. One such tool is the Integrated Data Viewer,

published by Unidata [31]. This tool, like many other tools,

streams data to a client from a database and plots every point.

There is no upper bound on the amount on the size of the

visualization, and no data reduction techniques. These tools

also provide very vivid and rich visualizations, which take

time to render. Scientists do not always want to wait on rich

visualization. Sometimes they want to get a quick snapshot

of the data, and to do this, there must be some aggregation.

B. Web Based Analytics

There exist a variety of general purpose tools for visual

analytics, such as IBM’s Many Eyes [24] and Google Fusion

Tables [25]. These tools give anyone the ability to visualize

data. However, these tools are not tailored to our specific

needs. Our data is multivariate and contains various features,

along with a geospatial location and time stamp. Also, to

reduce data size, these tools use sampling, and visualize the

sampled data rather than the entire dataset, thus incurring the

sampling penalties descried earlier.

There are web-based tools that do aggregation such as

Microsoft’s Pivot [26]. This tools has a notion of a collection,

and can aggregate collections along various dimensions that

data would share. This allows the user to gain new insights

by data around and allowing a user to look at certain bits and

pieces at a time. But this tool is not tailored to our needs,

because preprocessing is involved to visualize any data.

C. Large Scale Visual Data Analytics

There are existing products, such as AT&T’s Nanocubes

[27] or Stanford’s imMens [28] that allow for visualization of

large geospatial, time series, datasets, and allow for real-time

queries on that data set. However, imMens requires users to

predefine widths for aggregation. They do this to save time

when creating data cubes, and because they have no reason

not to, as the data they used did not have attributes besides a

timestamp and geographic data. However, the data we desire

to visualize contains an additional dimension as well as the

geospatial time series aspect for each feature the user is

interested in. For example, our data is not only about

Colorado in October, it also contains the snowfall at that

specific point, as well as any other feature involved. These

different features require different bin sizes, and we do not

expect our user to provide those values, as we can find a more

precise value for them.

Our work is also strongly related to Nanocubes. However,

Nanocubes is not suitable for the frequently updated dataset

such as climate datasets. Since Nanocubes supports only

read-only back-end data structure, a new nanocube would

need to be created every time an update occurs. GeoLens is

also capable of polygon queries covering any sized area,

where as both Immens and Nanocubes can only support

bounding box queries.

VI. PERFORMANCE EVALUATIONS

A. Experimental Configuration

For the data in this study, we used real world data from

the National Oceanic and Atmospheric Administration

(NOAA) North American Mesoscale Forecast System

(NAM) [29]. Using Galileo’s NetCDF plugin, we sampled

from this dataset to create test data of one billion

(1,000,000,000) files, each around 8 KB, spanning three

months. The features we indexed included the spatial location

of the samples, the time they were recorded, the surface

temperature (Kelvin), total precipitation (meters), and wind

speed (meters per second).

Galileo was executed in our heterogeneous 77-node

cluster composed of 47 HP DL160 servers (Xeon E5620, 12

GB RAM, 15000 RPM Disk) and 28 Sun Microsystems

SunFire X4100 servers (Opteron 254, 8 GB RAM, 10000

RPM Disk). However, only 13 of these HP nodes were

utilized for these experiments. GeoLens was run on a single

HP-Z220-XeonE3-12230 machine with 8GB RAM. The

software providing the map of the world and the image tiles

comprising the map were created by the OpenStreetMap

community [30].

B. Performance Evaluation

In order to test the performance of GeoLens, we looked at

the total time to create a snapshot for three different

geographic areas. We then analyzed the time taken at each

step of creating the VisGraph.

The steps taken into account are: the time to find points

in the Geoavailability grid, the amount of time it takes to

create the image tiles and histograms, and the length of time

takes to display these on the client’s computers. Finding the

correct node in which to do the VisGraph creation on never

takes more than two messages in the system, due to Galileo’s

zero-hop nature, and each node’s feature graph. These values

are averaged over 100 runs and shown in Figure 7. The values

for searching the GeoGrid, as well as VisGraph creation,

come from a single node within the network. The timer

begins when a node gets a query, and the timer stops when

that node sends its VisGraph to the coordinator to be merged.

Different nodes were considered throughout the 100 runs.

The final aspect, the time to display the visualization is the

time to unmarshal the network representation of the

VisGraph into the final image displayed on the users screen.

As this graph shows, GeoLens is extremely quick at

giving a snapshot of the data, regardless of data size, or

geographic size. A point of interest in this graph one might

notice is the amount of time to locate data takes longer than

in the larger cases.
Table 1 – Data Reduction in GeoLens

Original Size Reduced Size

15.4688 MB .684 KB

178.219 MB 1.806 KB

2316.84375 MB 3.736 KB

This is because we are looking for points with a higher

resolution in this case. We demonstrate the data reduction

capabilities above, in Table 1.

These results show that GeoLens is not limited by the size

of data or the geospatial area that is required.

VII. CONCLUSION AND FUTURE WORK

A. Conclusions

Quick and effective visualization is a challenging

problem when datasets are multivariate and voluminous, and

providing brushing and linking capabilities with the

visualized data provides additional challenges. For these

issues, we have developed GeoLens, a framework built over

an existing DHT framework, Galileo. GeoLens enables data

search, retrieval, and aggregation on Galileo with sub-second

response times to support interactive visual analytics. The

system preserves data locality during visualization by means

of aligning image tiling to the data partitioning (geohash

resolutions) within the storage framework. We have

incorporated brushing and linking into our distributed visual

query scheme and also our data aggregation algorithms. Our

autonomous histogram generation scheme is scalable and

fast.

B. Future Work

When a part of a polygon is barely contained within a

geohash, we visualize it in the same manner as if the entire

geohash was covered. Instead, we could divide this one

geohash box further, and get a more precise geo tile. This

way, the visualization is more precise in the exact area it is

showing.

Another area we could expand on is our autonomous

histogram generation. Some of the features in the dataset we

are using are categorical, rather than numerical, and if we try

to aggregate these values using a numeric scheme, we are not

going to have good results. Instead of creating a histogram

spanning a series of numbers, we want to have counts of

different categories. The research problem lies with deciding

whether a set of numeric data is categorical or not.

Figure 7 – The time taken during various phases of GeoLens.

ACKNOWLEDGEMENTS

This research has been supported by funding from the US

Department of Homeland Security’s Long Range program

(HSHQDC-13-C-B0018).

REFERENCES

[1] D. A. Keim, "Information Visualization and Visual Data

Mining," IEEE Transactions on Visualization and

computer graphics, 2002.

[2] R. Voigt, "An Extended Scatterplot Matrix and Case

Studies in Information Visualization," Master's thesis,

Hochschule Magdeburg-Stendal, 2002.

[3] Y. H. Beth Yost, and Chris North, "Beyond visual acuity:

the perceptual scalability of information visualizations for

large displays," In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (CHI '07).

ACM, New York, NY, USA, , pp. 101-110, 2007.

[4] S. P. Matthew Malensek, and Shrideep Pallickara,

"Geometry and Proximity Constrained Query Evaluations

over Large Geospatial Datasets Using Distributed Hash

Tables," (To appear) IEEE Computing in Science and

Engineering (CiSE). Special Issue on Extreme Data.,

2014.

[5] S. P. Matthew Malensek, and Shrideep Pallickara,

"Expressive Query Support for Multidimensional Data in

Distributed Hash Tables," Proceedings of the IEEE/ACM

Conference on Utility and Cloud Computing, Chicago,

USA. 2012., pp. 31-38, 2012.

[6] S. P. Matthew Malensek, and Shrideep Pallickara,

"Galileo: A Framework for Distributed Storage of High-

Throughput Data Streams," Proceedings of the

IEEE/ACM Conference on Utility and Cloud Computing.

Melbourne, Australia., 2011.

[7] S. P. a. S. P. Matthew Malensek, "Polygon-Based Query

Evaluation over Geospatial Data Using Distributed Hash

Tables," presented at the Proceedings of the IEEE/ACM

Conference on Utility and Cloud Computing, Dresden,

Germany, 2013.

[8] D. Anderson, D. Sweeney, and T. Williams, Essentials of

Statistics for Business and Economics, Revised: Cengage

Learning, 2011.

[9] Microsoft. (2014). Explore histograms: Office 2003.

Available: http://office.microsoft.com/en-us/excel-

help/explore-histograms-HA001110948.aspx

[10] D. Freedman and P. Diaconis, "On the histogram as a

density estimator:L 2 theory," Zeitschrift für

Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.

57, pp. 453-476, 1981/12/01 1981.

[11] H. Shimazaki and S. Shinomoto, "A method for selecting

the bin size of a time histogram," Neural computation,

vol. 19, pp. 1503-1527, 2007.

[12] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.

Joseph, and J. D. Kubiatowicz, "Tapestry: A resilient

global-scale overlay for service deployment," Selected

Areas in Communications, IEEE Journal on, vol. 22, pp.

41-53, 2004.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.

Balakrishnan, "Chord: A scalable peer-to-peer lookup

service for internet applications," ACM SIGCOMM

Computer Communication Review, vol. 31, pp. 149-160,

2001.

[14] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, et al., "Dynamo: amazon's highly

available key-value store," SIGOPS Oper. Syst. Rev., vol.

41, pp. 205-220, 2007.

[15] R. Rew and G. Davis, "NetCDF: an interface for scientific

data access," Computer Graphics and Applications, IEEE,

vol. 10, pp. 76-82, 1990.

[16] W. Contributors. (2013, July 10). Geohash. Available:

http://en.wikipedia.org/wiki/Geohash

[17] A. Guttman, R-trees: a dynamic index structure for spatial

searching vol. 14: ACM, 1984.

[18] GeoNames. (Retrived 2014). GeoNames. Available:

http://geonames.org/

[19] N. G. I. Agency. (Retrived July 2014). NGA GEOnet

Names Server (GNS). Available: http://earth-

info.nga.mil/gns/html/

[20] S. B. Ahlberg C., "Visual information seeking: Tight

coupling of dynamic query filters with starfield

 displays," In Proceedings of CHI (1994), , pp. 313-317,

1994.

[21] E. Bertini and G. Santucci, "Give chance a chance:

modeling density to enhance scatter plot quality through

random data sampling," Information Visualization, vol. 5,

pp. 95-110, 2006.

[22] O. Rübel, K. Wu, H. Childs, J. Meredith, C. G. Geddes,

E. Cormier-Michel, et al., "High performance

multivariate visual data exploration for extremely large

data," in Proceedings of the 2008 ACM/IEEE conference

on Supercomputing, 2008, p. 51.

[23] D. W. Scott, "Scott's rule," Wiley Interdisciplinary

Reviews: Computational Statistics, vol. 2, pp. 497-502,

2010.

[24] F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, and

M. McKeon, "Manyeyes: a site for visualization at

internet scale," Visualization and Computer Graphics,

IEEE Transactions on, vol. 13, pp. 1121-1128, 2007.

[25] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J.

Madhavan, R. Shapley, et al., "Google fusion tables: web-

centered data management and collaboration," presented

at the Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data,

Indianapolis, Indiana, USA, 2010.

[26] Microsoft. (2014). PivotViewer. Available:

http://www.microsoft.com/silverlight/pivotviewer/

[27] L. Lins, J. T. Klosowski, and C. Scheidegger, "Nanocubes

for real-time exploration of spatiotemporal datasets,"

Visualization and Computer Graphics, IEEE

Transactions on, vol. 19, pp. 2456-2465, 2013.

[28] Z. Liu, B. Jiang, and J. Heer, "imMens: Real‐time Visual

Querying of Big Data," in Computer Graphics Forum,

2013, pp. 421-430.

[29] NOAA. (2013). The NAMNOAA. . Available:

http://www.emc.ncep.noaa.gov/index.php?branch=NAM

[30] M. Haklay and P. Weber, "OpenStreetMap: User-

Generated Street Maps," Pervasive Computing, IEEE,

vol. 7, pp. 12-18, 2008.

[31] Murray, Don, et al. "13.2 THE INTEGRATED DATA

VIEWER – A WEB-ENABLED APPLICATION FOR

SCIENTIFIC ANALYSIS AND VISUALIZATION."

(2003).

http://office.microsoft.com/en-us/excel-help/explore-histograms-HA001110948.aspx
http://office.microsoft.com/en-us/excel-help/explore-histograms-HA001110948.aspx
http://en.wikipedia.org/wiki/Geohash
http://geonames.org/
http://earth-info.nga.mil/gns/html/
http://earth-info.nga.mil/gns/html/
http://www.microsoft.com/silverlight/pivotviewer/
http://www.emc.ncep.noaa.gov/index.php?branch=NAM

