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Abstract— With the rapid increase of scientific data volumes, 

interactive tools that enable effective visual representation for 

scientists are needed. This is critical when scientists are 

manipulating voluminous datasets and especially when they 

need to explore datasets interactively to develop their 

hypotheses. In this paper, we present an interactive visual 

analytics framework, GeoLens. GeoLens provides fast and 

expressive interactions with voluminous geo-spatial datasets. 

We provide an expressive visual query evaluation scheme to 

support advanced interactive visual analytics technique, such as 

brushing and linking. To achieve this, we designed and 

developed the Geohash based image tile generation algorithm 

that automatically adjusts the range of data to access based on 

the minimum acceptable size of the image tile. In addition, we 

have also designed an autonomous histogram generation 

algorithm that generates histograms of user-defined data 

subsets that do not have pre-computed data properties. Using 

our approach, applications can generate histograms of datasets 

containing millions of data points with sub-second latency. The 

work builds on our visual query coordinating scheme that 

evaluates geo-spatial query and orchestrates data aggregation 

in a distributed storage environment while preserving data 

locality and minimizing data movements. This paper includes 

empirical benchmarks of our framework encompassing a 

billion-file dataset published by the National Climactic Data 

Center. 

Keywords- [Visual analytics, distributed hash tables, Geospatial 

datasets, interactive analysis] 

I. INTRODUCTION  

Higher resolution displays are useful to understand and 

analyze complicated natural phenomena. However, as the 

scale of the dataset reaches human perceptual or cognitive 

limits, traditional data visualization tools are not efficient 

enough for the task of providing an intuitive and interactive 

sketch of the dataset. This is especially true for scientific 

datasets often used in simulations and analyses. Here, 

interactive explorations are a critical tool to develop scientific 

hypothesis, explore validity of models, and to reduce the time 

between further experiments.  

Many datasets are too large to fit in memory or to even be 

stored on a single machine. Current data centers comprise 

large numbers of machines and the data is dispersed over 

them. At this scale, interactive visual analytics is often 

limited by the data access capability. Interactive visual 

analytics encompasses efficient query evaluation, effective 

data transfer, and distributed data processing for 

implementing visualization algorithms.  

In this paper, we address the problem of scalable and 

interactive explorations of voluminous, distributed datasets 

using an integrated approach that encompasses visualization 

algorithms and efficient evaluation of queries. Our approach 

also enables interactive visual analytics techniques such as 

brushing and linking over distributed raw datasets. Brushing 

and linking refers to the visualization technique that 

combines different visualization methods to overcome the 

shortcomings of using a single approach exclusively and in 

isolation. Users can select a subset of the data item using the 

brushing technique, and the user’s brushing actions are 

connected via linking. [1, 2] To support this feature, the query 

should be expressive enough to represent the relations 

between the visual components, and allow for immediate 

traversal between multiple views. The system should also 

cope with the perceptual limit of the data visualization 

autonomously. The visual acuity with high-resolution display 

has imposed a perceptual scalability limit [3]. If the 

resolution of image is so high that an individual pixel cannot 

be seen, an even higher resolution is unlikely to be beneficial, 

regardless of how close a user is to a display.  

We have explored the brushing and linking over heat maps 

and histograms of features. As depicted in Figure 1, here the 

targeted dataset is specified as the result of query generated 

by users. Since the targeted dataset is customizable, several 

dataset properties, such as the max/min or frequency counts, 

are not available until the query result is ready. Likewise, the 

scale of dataset has a wide range: from few kilobytes to 

multiple terabytes. In many cases, the pixel representation is 

much more compact than the raw data formats. 

GeoLens is a framework for the scalable interactive visual 

analytics. To address perceptual scalability over geospatial 

datasets, we have developed algorithms for geohash based 

self-adjustable data tiles and autonomous histogram 

generation.  Geohash based self-adjustable data tiles enable 

the system to access the required dataset based on the 

Figure 1. GeoLens displaying the result of a query encompassing the north-

eastern part of Colorado. Here we see available months and features, as 
well as, the current geohash tiles and histogram counts for the month of 

February in 2014.  



effective resolution of the display automatically. With 

autonomous histogram generation, the histogram of a feature 

will be generated without having any pre-computed data 

properties. We have included comparisons of several well-

known histogram creation algorithms and how effective and 

scalable each algorithm is when they are applied in a 

distributed storage setting. Our results show that GeoLens 

provides sub-second latency to generate histogram for 

millions of data points with a reasonable accuracy. 

To address the scalability for evaluating this advanced 

query in a distributed file system, we have developed a visual 

query coordinator. The visual query coordinator generates 

query results that are translated into visual components on the 

server-side. The visual query coordinator is selected from the 

set of available storage nodes and it is responsible for 

aggregating values, tracking visualization algorithms, and 

ensuring load balancing within the storage cluster. 

We evaluated our approach in the context of our Galileo 

system [4-7]. Galileo is a scalable storage framework for 

managing multidimensional geospatial time-series data for 

scientific applications. Galileo stores blocks of multi-

dimensional arrays with temporal and geospatial metadata 

alongside the attributes. Users are allowed to query these 

datasets by specifying multi-dimensional queries that specify 

bounds or wildcards for one or more dimensions 

corresponding to the observations/features stored within the 

system. Queries supported by Galileo include exact match 

queries, range queries, and approximate queries.  

A. Scientific Challenges 

This paper addresses the problem of interactive visual 
analytics over voluminous geospatial datasets. The challenges 
involved in accomplishing this include the following:  

 The datasets are voluminous and must be dispersed 
over a number of distributed storage nodes. 

 The use of traditional data visualizations over such 
voluminous datasets can incur high latency. 

 Existing visualization applications are limited in their 
ability to facilitate perceptual understanding of 
datasets at this scale.  

 Dataset properties such as distribution of features are 
unknown and may continuously evolve. 

 For the integrated visual analytics technique such as 
brushing and linking, the relation between visual 
components is complicated and must be customizable 
based on the design of the application.  

B. Research Questions 

Major research questions that we explore in this paper 
include the following: 

 How can we ensure fast visual query evaluations 
over distributed datasets so that we can support 
interactive visual analytics? 

 How can we adjust the resolution of the image tile 
within the user’s perceptual limit? 

 How can we provide flexible and expressive system 
data structures so that they are amenable for 
interactive visual analytics techniques? 

 How can we avoid large amounts of data transfers 
during visualization and processing? Given the data 
volumes involved, the transfer costs can introduce 
considerable delays. 

 How can we maximize data locality during visual 
query evaluations? 

 How can we effectively balance query workloads so 
that a large number of visual query evaluations can 
be performed concurrently? 

C. Overview of Approach 

The approach described in this paper is based on our 

distributed storage framework, Galileo [4]. Galileo is a 

hierarchical distributed hash table (DHT) that provides 

support for high-throughput management of voluminous, 

multidimensional observational data streams. Datasets 

managed by Galileo are partitioned and dispersed over a large 

cluster of commodity machines using the geohash encoding 

scheme to preserve geospatial proximity of data points. 

Query evaluations are assisted by memory-resident metadata 

graphs at each storage node.  

To support perceptual scalability for the geospatial 

dataset, GeoLens provides geohash based self-adjustable data 

tiles. Based on the user’s display and the zooming actions, 

the size of the image tile is translated to the length of geohash 

code. In the geohash algorithm, the length of the code 

represents the resolution of the geospatial region: a longer 

code has higher resolution, and correspondingly a smaller 

geospatial grid. No matter what the resolution the client 

selects, the final volume of data delivered to the user will be 

approximately the same in GeoLens. This feature is directly 

related to data locality, because Galileo disperses and stores 

the dataset based on the geohash values associated with the 

data points. In general, the resolution of geohash used for the 

data dispersion tends to be lower than the one used for the 

image tile. Generating a single image tile requires minimal 

data movements between the storage nodes. 

Our autonomous histogram generation is a distributed 

algorithm that generates histograms from the dataset without 

any pre-computed or preserved data properties. A histogram 

represents frequency distribution using rectangles whose 

widths represent class intervals and whose areas are 

proportional to the corresponding frequencies [8]. Providing 

meaningful widths based on the complete data distribution is 

critical to achieving an effective histogram display. Since the 

targeted data is available only after the initial query result is 

ready, the algorithm cannot be performed offline. We have 

considered three types of algorithms: the N-Squared rule [9], 

the Freedman–Diaconis' choice (Freedman) [10], and 

Histogram Bin-width Optimization [11] to find an algorithm 

that scales well with acceptable latency and accuracy. 

GeoLens utilizes the Freedman algorithm and to provide sub-

second latency for millions of data points. 



In GeoLens, we define a visual query as a query that 

generates results that are processed by interactive data visual 

analytics tools. This involves data query evaluations, data 

aggregation, and transforming results to interoperate with the 

visual components. The query also involves distributed data 

processing such as autonomous histogram generation. To 

perform visual query evaluations at scale, we have devised a 

visual query coordinator. As soon as the user’s visual query 

arrives at Galileo, one of the nodes (usually, the node 

containing the largest amount of data points) will act as a 

proxy for the client to collect the query results that are image 

tiles being generated by the other nodes. This architecture 

allows for dispersion of processing loads since the data is 

processed at the nodes that hold the data. Data movements 

between the storage nodes are reduced because of data 

locality during processing. The server-side processing also 

reduces the amount of data that needs to be transferred 

between client and server while minimizing the amount of 

data processing in the client application. 

D. Paper Contributions 

This paper presents the design of the GeoLens visual 

analytics framework for voluminous, multivariate, geospatial 

datasets. The paper explores the use of brushing and linking 

technique with heat maps and histograms of the time series 

features using GeoLens. Our approach addresses the 

scalability in terms of the visual perception and distributed 

processing. Our distributed algorithm can generate 

histograms of dispersed datasets without pre-computed data 

properties. Our Geohash based self-adjustable image tiles 

algorithm addresses visual perceptive scalability by keeping 

the size of the final results minimum and constant. Our visual 

query coordinator approach preserves data locality while 

minimizing data movements; this allows for faster 

visualization. Our evaluations target latency for performing 

visual queries at various scales of query results to 

demonstrate its feasibility in various settings. 

E. Paper Organization 

The remainder of this paper is organized as follows. In 

section II, we provide a background of this research. In 

section III, we describe the query evaluation scheme in 

GeoLens. Section IV discusses the brushing and linking 

feature over heat maps and histograms. We explain each of 

the aggregation methods, and how VisGraph of GeoLens 

links these methods. Section V provides related works. A 

performance evaluation of various aspects of the system is 

presented in Section VI. Finally, conclusions and future work 

are outlined in Section VII. 

II. BACKGROUND 

A. Galileo 

For our storage requirements, we utilize Galileo, a 

distributed data storage framework for voluminous multi-

dimensional, geospatial, time-series datasets. Data can be 

streamed to Galileo from any sort of device designed to 

observe facets of our environment, such as sensors or 

satellites, and Galileo will handle dispersion and indexing. 

1) Network Topology  

Galileo is modeled as a distributed hash table (DHT). 

However, unlike standard DHTs such as Tapestry [12] or 

Chord [13], Galileo employs a two tier hashing scheme for 

block distribution among multiple machines, or nodes. 

Galileo is a zero-hop DHT, a feature seen in other 

implementations such as Amazon’s Dynamo [14], meaning 

requests are sent directly to their destination, rather than 

visiting intermediate nodes.    

Galileo is well suited for storing and processing 

voluminous, multivariate datasets containing spatial and 

temporal information, and additional features of interest. 

Galileo can support a variety of common data formats, such 

as NetCDF [15], and can handle a variety of query types, 

including both exact-match and range-based queries. 

However, unlike other DHTs, Galileo does not use a generic 

hashing scheme for data distribution, and instead exploits 

geospatial characteristics in the data for distribution. 

2) Geohashing 

By employing a generic hashing scheme, we can achieve 

the desired result of distributing the data evenly across our 

nodes. However, we can preserve the geospatial information 

in the data, and achieve data dispersion, while grouping 

similar points, if we employ a geohash algorithm [16] as our 

first-tier hashing scheme. The purpose of the geohash 

algorithm is to divide the earth into an arbitrary sized grid, 

dependent on the desired precision. Each of the boxes in this 

grid is identified with a string. The longer the string, the 

higher-level resolution we will have. 

For example, the latitude longitude pair of 39.5997° N, 

105.0108° W would be bounded by the box 9XJ362VKZ. If 

we added more characters to this string and subdivided even 

further, we would be narrowing the area of the bounding box 

around this point. A geohash of only 12 characters would 

have a bounding box smaller than a meter [16], so we can be 

as precise as we can like and the geohash algorithm gives us 

a deterministic mechanism of data dispersion within the same 

group. An example of sub diving a geohash is demonstrated 

in figure 2.  

This scheme, while giving us the desired effect of grouping 

data with similar features, leads the probability of storage 

imbalances across nodes in the system [5]. However, if we 

Figure 2. An illustration of the recursive subdivision of a geohash bounding 
box.  



use a second hashing scheme for dispersion within the 

group chosen by the geohash, we can achieve a balance. We 

do this second tier hashing scheme on a feature of the data. 

While the geohashing algorithm is going to present 

imbalances in data placement within nodes, the dispersion 

between the geohash and SHA-1 algorithm is only 1% [5]. 

3) Indexing: The Geoavailibilty Grid  

Indexing blocks in a distributed environment poses many 

interesting challenges. If we use a central index server, this 

quickly becomes our single point of failure and contact. 

However, if the index is shared across all nodes, this can lead 

to increased communication between nodes as they compare 

and update state involving the index among themselves. 

There are offline solutions such as R-trees[17] available, but 

these would leave a large memory footprint if they are 

indexing a billion files, not to mention the large amount of 

traffic that would be generated after every rebalance. Instead 

of these solutions, Galileo employs a Geoavailability grid for 

indexing. This grid translates points in space into a coarser 

resolution coordinate system. It is described by a vector of 

bits, or bitmap, where a bit is set to 1 if information has been 

stored in that location, and it is set to 0 otherwise.  

Each node in the system keeps a Geoavailability grid of the 

location it is responsible for; however, any node in the system 

must be able to service any request to any node, regardless of 

failures in the system. Geoavailability grids are gossiped 

between all nodes. However, they are compressed before 

being sent and processed, and have the added bonus of not 

needing to be decompressed before being processed. [7] 

After spatial information has been indexed in all of the 

Geoavailability grids, the system can then evaluate user-

defined geospatial queries in the form of polygons 

encapsulating areas of interest. These polygons can be of any 

size, and are comprised of a list of latitude and longitude 

coordinates. These polygons are decomposed into smaller 

polygons if they are too large for current geohash resolution. 

For example, if our current resolution is 2 characters long, 

and this polygon’s area covers two adjacent geohashes, it 

would be split into two different polygons, and treated as 

separate queries. These polygons are then consulted against 

the Geoavailability grids to find if data may be available and 

to eliminate nodes that cannot possibly service this query. 

Queries are also evaluated against other local metadata 

structures, the metadata graph and feature graph.  

4) Metadata and Information Retrieval 

Galileo allows users to query the system using features and 

feature values, rather than files or directories. This is 

accomplished using two data structures that each node 

contains in memory, a low-resolution feature graph detailing 

the global dataset, and a high-resolution metadata graph used 

for local evaluations of data stored on that node.  

The low-resolution feature graph is used to reduce the 

overall search space when issuing a query. With this feature 

graph, queries can be issued to any node in the system, and it 

provides a coarse-grain view of all the dataset. This allows 

the node to have a global view of where to issue sub-queries 

throughout the system that will answer this query.  

Nodes that receive this more directed sub query evaluate it 

against their local metadata graph. The high-resolution 

metadata graph instance at each node is populated with 

feature information that node is currently holding in files on 

the hard disk. It follows a hierarchical tree-like structure 

where each level of the tree corresponds to an indexed 

feature, and the leaves of the tree contain the data matching 

this path. Traversing this metadata graph from root to leaves 

allows nodes to narrow down queries to the relevant files that 

have these values along this certain path. However, traversing 

from leaf to root tells the node that this certain block has the 

feature values described by the path. This tree like structure 

allows us to group paths and sub-paths from root to leaf and 

hide duplicated data. This graph can be restructured or re-

oriented, such that any query can be answered and the 

relevant data files matching this query are acquired, without 

ever having to go to disk.  

The typical data flow involving these structures is as 

follows. A query is sent to any node in the system, and that 

node consults its respective feature graph to construct a set of 

candidate nodes to evaluate this query. This query is then 

forwarded to these nodes where they further evaluate the 

query on their local high-resolution metadata graph. 

III. DISTRIBUTED EVALUATING VISUAL QUERY 

GeoLens allows users to specify their query over raw 

datasets stored in Galileo. To support visual analytics over 

voluminous datasets in a timely fashion requires an efficient 

scheme to first retrieve, and then aggregate, and finally, 

navigate query outputs. To support these distinctive 

requirements, we evaluate visual analytics queries and 

process the corresponding query results on the storage nodes 

prior to delivery to the application. Our concurrent data 

processing allows the visual analytics application to interact 

directly with the dataset, rather than limit interactions to the 

pre-processed dataset.  

A. Self-adjustable Image Tiles and Data Locality  

As depicted in Figure 2, Galileo uses the Geohash 

algorithm to partition the dataset over multiple storage nodes. 

Each storage node is responsible for a set of geohashes; 

portions of the dataset corresponding belonging to the same 

geohash are stored on the same machine. Finer resolution 

image tiles are represented by finer resolution geohashes and 

this is naturally aligns data dispersion in Galileo. Therefore, 

data processing, such as aggregation, involves reduced data 

movements between storage nodes. 

     Adjusting the resolution of the image tile relies on the 

Geohash algorithm. Applications can increase this resolution 

by increasing the length of Geohash string. The longer the 

string, the smaller the size of the image tiles. With a Geohash 

string of 12 characters, the image tile represents 1 meter x 1 



meter area. This enables the application to provide an 

effective minimum image tile size to the users.  

       The minimum image tile size is specified based on the 

maximum resolution supported by the device, and it is then 

translated to the corresponding Geohash resolution. When a 

user zooms-in to the image or zooms-out of the image, the 

image tile size and the Geohash resolution are re-calculated 

accordingly. For instance, if a user zooms-in to the image of 

the query results, the application increases the length of the 

Geohash string until it reaches the minimum image tile size. 

In contrast, if a user zooms-out of the image, the application 

merges the image tiles by reducing the length of the Geohash 

string.  

B. Visual Query Input  

We are faced with the need for geocoding, which is the 

process of translating a human readable name, such as Fort 

Collins, Colorado, United States, into its location on the 

earth. There are many geolocation services available such as 

geonames [18]. However, this is an online database and we 

do not want to rely on someone’s network we have no control 

over. There are some offline solutions such as the NGA earth-

info [19] but these are large files and require processing. 

Additionally, the output of these processes is a latitude and 

longitude pairs, denoting the center point of this area. We 

would need additional software to then find the series of 

latitude and longitude coordinates that bound this area. 

To overcome this problem, and to receive a query area, 

we allow the user to draw their area they want directly on the 

map. GeoLens can also save polygons users have submitted 

so they do not need to be drawn again.  

The features a user is interested should be included in the 

visual query. Galileo provides all of the features it is currently 

indexing, and the user can select all of the features they would 

like to examine. This polygon and the list of features are then 

sent to any node in Galileo to be examined. 

C. Distributed Query Evaluation 

As depicted in Figure 3, when a query arrives at any node, 

it follows the usual protocol of first consulting its 

Geoavailability grid and feature graphs to find potential 

groups that contain the information about this query. 

This visual query is then distributed to all groups that 

have data that falls within this query area. This can be one 

group if that area is small, or multiple groups if the area is 

large, it depends on the size of the polygon and the volume 

of the data currently stored. The sub-polygons are generated, 

and these sub polygons are sent to the respective groups. 

GeoLens instructs Galileo to select a visual query 

coordinator to evaluate a visual query. Most of the cases, the 

receiving node in the group plays the role of the coordinator. 

If the memory consumption and CPU utilization of the 

receiving node are higher than the configured thresholds, the 

receiving node pushes the request to the next node in the 

group. In Galileo, for a degree of replication N, there are N-

1 other nodes in the group that are responsible for storing a 

copy of the same data item. This allows data locality to be 

preserved within the group. 

The coordinator evaluates the user’s query, orchestrates 

data aggregation and builds a VisGraph that is the 

representation of the visual query results. VisGraph is the set 

of all sub features such as heat maps and histograms. The 

coordinator issues the user’s query to Galileo as if it is a 

regular Galileo query. The result of the query (a metadata 

graph) is used for planning further data processing. The 

coordinator retrieves the data locations from the result 

metadata graph and determines the node that will perform the 

partial data aggregation.  

D. Data Aggregation for Visual Analytics  

GeoLens provides several data reduction methods. Users 

can specify their own data reduction algorithms by using 

UDF (User Defined Function). Galileo has support for the 

sampling operator as a part of regular query.  

The most popular data reduction techniques include 

filtering [20], sampling [21], and binned aggregation [22]. 

Filtering and sampling techniques are effectively used on the 

entire dataset to give us a more manageable subset in which 

to visualize. However, there is no native guarantee in the 

sampling algorithm that the sample we get is small enough to 

Figure 3 - A graphic depicting the message and data flow within Galileo and GeoLens showing data structures within a node, as well as evaluation at the Visual 

Query Coordinator. 



fit within our visualization, so additional sampling might 

need to be done unless we are intelligent about our sampling. 

Another issue with sampling is it may omit outliers. Since 

every point has the same probability of being sampled, [21] 

we might omit important structures from the data simply 

because we got unlucky during our sampling. We can use 

some other form of sampling besides random sampling such 

as stratified sampling, or systematic sampling. However, 

these methods require prior knowledge of the structure of the 

data, and costly pre-processing. 

Another data reduction technique is aggregation, or the 

creation of histograms describing the data. A histogram 

represents frequency distribution using rectangles whose 

widths represent class intervals and whose areas are 

proportional to the corresponding frequencies [8]. We 

support aggregation because it shows global patterns through 

spike height, and still preserves local outliers because it takes 

into account the entire data set. We include detailed 

information about our autonomous data aggregation scheme 

in Section IV. 

E. Creating the VisGraph 

A VisGraph is a metadata graph of the visual query 

results. As depicted in Figure 4, the Galileo metadata graph 

of a regular query contains pointers to the actual file location 

in its leaf nodes. The GeoLens coordinator transforms the 

metadata graph into a VisGraph. Unlike the metadata graph 

in a regular query result, the VisGraph includes aggregated 

values and histogram summaries that simplifies image 

rendering.  

Visual analytics applications are required to render 

related images rapidly. For example, for a user who views 

and contrasts daily heat maps of temperatures in the US for 

March-2014, the application might need to render heat maps 

for any of the 31 days in March of 2014. To allow the users 

to traverse daily heat maps, the application will need to 

traverse among leaf nodes of the VisGraph. In general, the 

cost of traversal between the leaf nodes is O(log N), where N 

is the number of nodes in the VisGraph. To reduce the 

traversal cost, we organize the VisGraph based on the 

probability of leaf nodes being co-visited. The leaf nodes that 

have the highest chance to be visited together will share the 

same parent node. Finally, internal nodes closer to the root 

node indicate that traversal to those nodes is the result of a 

major feature change in the application.  

The first step in creating a VisGraph from a metadata 

graph is to first split the paths based on date. Our separation 

technique is first to separate the data based on year, and then 

month, and then day of the month. Then, for every day of the 

month in every year, a histogram and geohash tile set are 

created for every feature. This is achieved by simply 

traversing the metadata graph and simply populating the new 

VisGraph with values that are in this particular month.  

IV. BRUSHING AND LINKING 

Brushing and linking combines different visualization 

methods to overcome shortcomings of using a single 

approach over large, complex dataset. In this paper, we have 

explored brushing and linking over heat maps and histograms 

of features using visual queries and VisGraph.  

In order to enable brushing and linking on the client side, 

we created two different aggregations the data matched by 

the query. We aggregate the data in two different dimensions, 

and create two data structures sketching different facets of the 

data: feature histogram and heat maps 

A. Autonoumous Histogram Generation 

Aggregation, or binning, is the process of organizing the 

data into defined bins, and then counting each data point that 

falls into each bin. All of the features we examine in this 

paper are numeric, which leads to our aggregation technique 

being a set of uniform width bins, from the minimum value 

to the maximum value, for all of the features. 

The biggest challenge here is bin width selection for the 

unknown dataset. The data is voluminous, and new data is 

continuously being added to the existing dataset. Users 

specify portions of the dataset to be visualized interactively. 

Information such as data distribution (including density of 

values) of the dataset is not known to the system.  

There are a variety of ways we could obtain a bin width 

with which to aggregate data. A simple way would be to 

prompt the user. This would not be ideal because different 

features will have different widths, and the user might not 

know a good width for all of these features. In addition, the 

same features, but in different areas, could require different 

bin sizes. For example, an area that regularly experiences 

cold climates might not need the same guidelines as an area 

that experiences warm weather. Lastly, the same area might 

have different optimum bin widths, depending on the time of 

year. These reasons, coupled with the importance of the 

correct bin size described earlier, we do not leave it up to the 

user to supply our system with a value. Instead, we derive a 

bin width based on the data. 

In order to create our histograms from the data, we need to 

establish two variables: the number of bins, and the width of 

Figure 4 - An illustration of the transformation of a metadata graph to a 

VisGraph. 



those bins. The width of the bin is crucial to creating a 

histogram that best represents the data.  

1) Bin Size Prediction 

Our goal is to establish a histogram that best captures the 

underlying rate of our data. If we choose a width that is too 

wide, there are not enough bins to accurately portray the data. 

On the other hand, if the bin width is too narrow, we do not 

achieve the desired effect of reducing the data size. We need 

to find a width that both represents the peaks in our data, and 

gives us sufficient data reduction. 

This issue has been addressed at smaller scales; however, 

when data is voluminous, the turnaround times for bin size 

prediction should be rapid enough so that it is applicable to 

interactive applications such as GeoLens.  

Our goal is to achieve a bin size that provides 

approximately optimal width and also scales well with 

voluminous data stored in the distributed storage cluster. In 

order to find this algorithm, we compared and contrasted 

three different methods of obtaining the number of bars for a 

histogram: the N-Square method [9], the Freedman-Diaconis 

rule [10], and the optimal bin size algorithm from Shimazaki 

[11]. 

The N-Square method simply takes the bin size as  √𝑛 , 

where n is the number of points in the dataset. This is the most 

efficient method, but does not consider any aspect of the data 

other than the size. The Freedman-Diaconis rule takes into 

account properties of the data when creating the histogram. It 

does not simply look at the size of the data, but also considers 

the distribution of the data. It does this by considering the 

interquartile range of the dataset, it is based off of Scott’s 

normal reference rule [23], but is less sensitive to outliers 

because it uses the IQR rather than the standard deviation. By 

IQR we mean the interquartile range of the set.  
The optimal histogram algorithm from Shimazaki attempts 

to calculate the peaks of the underlying data, and then picks 

a histogram that most resolves that peak. It does this by 

minimizing an estimated risk function. This algorithm finds 

the histogram that best describes the data, however, it is very 

expensive.   

These algorithms are vastly different in how they arrive at 

the number of bars and their complexity. Figure 5 and 6 show 

our experiment on aforementioned approaches.   

2) Comparison of Histogram Generation Methods 

In order to decide which one of these generation methods 

we would use for our histogram creation, we looked at two 

different factors: their scalability with large data sizes, and 

the similarities in their output.  

The optimal histogram generation algorithm picks a bar 

width that best describes the spikes in the underlying rate. It 

shows the smallest error between the underlying rate and its 

histogram. It gives the best value for the number of bars. The 

Freedman method does not do this, however it gives similar 

results, as depicted in Figure 5. The optimal histogram 

algorithm gives us the best results, however, we have 

discovered that this algorithm is not useable in the realm of 

big data. It is extremely expensive as shown in Figure 5.  
One way we could mitigate the cost of this algorithm is by 

sampling from our larger dataset. However, this algorithm 

depends on three different variables, the minimum min x, the 

maximum max x, and the number of data points in the dataset 

n. In our sample, we would need to make sure to sample the 

maximum and minimum values, which would no longer 

make it a random sample. In addition, since this algorithm is 

dependent on the size of the data set, our sample can, and very 

likely will, generate a different bin size than it would if it 

worked on the entire dataset. Since this value is different than 

the optimal one for the entire dataset, it is no longer optimal. 

The Freedman algorithm produced very similar bin sizes to 

the optimal bin-size algorithm. This is demonstrated in figure 

6. Even though the Freedman does not pick the same bin-

sizes as the optimal one, it oscillates around its values. That 

is why for its speed over time, coupled with the fact it chooses 

Figure 6 - The number of bars each method creates, dependent on the 
number size of the data. As the square root method soars off, the optimal 

and Freedman methods remain very similar. 
 

 

 

 

 

Figure 5 - The creation time of the three different methods. Even with 

only 5000 points, the scalability of the optimal histogram generation 

comes into question, but the other two methods scale. 



similar bin sizes, regardless of data size, we have chosen to 

use the Freedman-Diaconis rule as the method to 

autonomously generate histograms. 

B. Heat maps 

The geospatial aggregation process benefits from the 

strategy used in the self-adjustable data tile scheme. Merging 

and separating geohash boxes are done by adjusting the 

length of hash code string. Geospatial aggregation in heat 

maps requires minimum data transfers between the storage 

nodes because the data partitioning that happens in the 

storage system is closely aligned to the image tiles that will 

be displayed.  

1) Minimum Acceptable Geohash Size 

When a query is submitted into any node in Galileo, the 

geospatial coverage is specified as a form of a polygon. If this 

polygon covers more than one geohash area rectangle at the 

current resolution, the polygon is split into different polygons 

for evaluation at different nodes. After these sub-polygons 

are sent to the correct nodes, GeoLens harnesses this sub-

polygon by first finding all of the geohashes that are inside of 

this polygon, and are two characters (configurable value) 

longer than the current global resolution. In this way we have 

a bounded size on the geospatial aspect of our geospatial 

visualization. It is bounded both in the max amount of 

geohash tiles we create, and is guaranteed to give us enough 

geohash boxes, without overloading the user’s ability to 

perceive it. 

2) Creating the Geohash Dictionary 

After all the geohashes that reside inside of this polygon 

are found, GeoLens creates a dictionary with geohash values, 

and populates it with values from the data that are inside of 

this box. We already have a sketch of all the data values in 

this entire area surrounded by the polygon, so we need to 

create one for just the values inside of this polygon. This is 

done by averaging the values in this box, and reporting this 

average as the value for this geohash area. This creates a 

dictionary of the geohashes in this area, and a snapshot of 

those values in that area.   
 

C. Linking Between Heat Maps and Histograms 

Brushing and Linking requires fast interactions between 

different summarized views of the same dataset. When a user 

changes one of their views, the other view associated with the 

modified view should be immediately rendered. GeoLens 

links different views of dataset through VisGraph. Heat maps 

and histograms are linked by sharing ancestor nodes in a 

VisGraph.  

V. RELATED WORKS. 

A. Traditional Techniques (Visualization Systems): 

There exist many tools available now for visualizing 

geospatial data. One such tool is the Integrated Data Viewer, 

published by Unidata [31]. This tool, like many other tools, 

streams data to a client from a database and plots every point. 

There is no upper bound on the amount on the size of the 

visualization, and no data reduction techniques. These tools 

also provide very vivid and rich visualizations, which take 

time to render. Scientists do not always want to wait on rich 

visualization. Sometimes they want to get a quick snapshot 

of the data, and to do this, there must be some aggregation. 

B. Web Based Analytics 

There exist a variety of general purpose tools for visual 

analytics, such as IBM’s Many Eyes [24] and Google Fusion 

Tables [25]. These tools give anyone the ability to visualize 

data. However, these tools are not tailored to our specific 

needs. Our data is multivariate and contains various features, 

along with a geospatial location and time stamp. Also, to 

reduce data size, these tools use sampling, and visualize the 

sampled data rather than the entire dataset, thus incurring the 

sampling penalties descried earlier. 

There are web-based tools that do aggregation such as 

Microsoft’s Pivot [26]. This tools has a notion of a collection, 

and can aggregate collections along various dimensions that 

data would share. This allows the user to gain new insights 

by data around and allowing a user to look at certain bits and 

pieces at a time. But this tool is not tailored to our needs, 

because preprocessing is involved to visualize any data. 

C. Large Scale Visual Data Analytics 

There are existing products, such as AT&T’s Nanocubes 

[27] or Stanford’s imMens [28] that allow for visualization of 

large geospatial, time series, datasets, and allow for real-time 

queries on that data set. However, imMens requires users to 

predefine widths for aggregation. They do this to save time 

when creating data cubes, and because they have no reason 

not to, as the data they used did not have attributes besides a 

timestamp and geographic data. However, the data we desire 

to visualize contains an additional dimension as well as the 

geospatial time series aspect for each feature the user is 

interested in. For example, our data is not only about 

Colorado in October, it also contains the snowfall at that 

specific point, as well as any other feature involved. These 

different features require different bin sizes, and we do not 

expect our user to provide those values, as we can find a more 

precise value for them.  

Our work is also strongly related to Nanocubes. However, 

Nanocubes is not suitable for the frequently updated dataset 

such as climate datasets. Since Nanocubes supports only 

read-only back-end data structure, a new nanocube would 

need to be created every time an update occurs. GeoLens is 

also capable of polygon queries covering any sized area, 

where as both Immens and Nanocubes can only support 

bounding box queries. 



VI. PERFORMANCE EVALUATIONS 

A. Experimental Configuration 

For the data in this study, we used real world data from 

the National Oceanic and Atmospheric Administration 

(NOAA) North American Mesoscale Forecast System 

(NAM) [29]. Using Galileo’s NetCDF plugin, we sampled 

from this dataset to create test data of one billion 

(1,000,000,000) files, each around 8 KB, spanning three 

months. The features we indexed included the spatial location 

of the samples, the time they were recorded, the surface 

temperature (Kelvin), total precipitation (meters), and wind 

speed (meters per second). 

Galileo was executed in our heterogeneous 77-node 

cluster composed of 47 HP DL160 servers (Xeon E5620, 12 

GB RAM, 15000 RPM Disk) and 28 Sun Microsystems 

SunFire X4100 servers (Opteron 254, 8 GB RAM, 10000 

RPM Disk). However, only 13 of these HP nodes were 

utilized for these experiments. GeoLens was run on a single 

HP-Z220-XeonE3-12230 machine with 8GB RAM. The 

software providing the map of the world and the image tiles 

comprising the map were created by the OpenStreetMap 

community [30]. 

B. Performance Evaluation 

In order to test the performance of GeoLens, we looked at 

the total time to create a snapshot for three different 

geographic areas. We then analyzed the time taken at each 

step of creating the VisGraph. 

The steps taken into account are: the time to find points 

in the Geoavailability grid, the amount of time it takes to 

create the image tiles and histograms, and the length of time 

takes to display these on the client’s computers. Finding the 

correct node in which to do the VisGraph creation on never 

takes more than two messages in the system, due to Galileo’s 

zero-hop nature, and each node’s feature graph. These values 

are averaged over 100 runs and shown in Figure 7. The values 

for searching the GeoGrid, as well as VisGraph creation, 

come from a single node within the network. The timer 

begins when a node gets a query, and the timer stops when 

that node sends its VisGraph to the coordinator to be merged. 

Different nodes were considered throughout the 100 runs. 

The final aspect, the time to display the visualization is the 

time to unmarshal the network representation of the 

VisGraph into the final image displayed on the users screen.  

As this graph shows, GeoLens is extremely quick at 

giving a snapshot of the data, regardless of data size, or 

geographic size. A point of interest in this graph one might 

notice is the amount of time to locate data takes longer than 

in the larger cases. 
Table 1 – Data Reduction in GeoLens 

Original Size Reduced Size 

15.4688 MB .684 KB 

178.219 MB 1.806 KB 

2316.84375 MB 3.736 KB 

This is because we are looking for points with a higher 

resolution in this case. We demonstrate the data reduction 

capabilities above, in Table 1. 

These results show that GeoLens is not limited by the size 

of data or the geospatial area that is required.  

VII. CONCLUSION AND FUTURE WORK 

A. Conclusions 

Quick and effective visualization is a challenging 

problem when datasets are multivariate and voluminous, and 

providing brushing and linking capabilities with the 

visualized data provides additional challenges. For these 

issues, we have developed GeoLens, a framework built over 

an existing DHT framework, Galileo. GeoLens enables data 

search, retrieval, and aggregation on Galileo with sub-second 

response times to support interactive visual analytics. The 

system preserves data locality during visualization by means 

of aligning image tiling to the data partitioning (geohash 

resolutions) within the storage framework. We have 

incorporated brushing and linking into our distributed visual 

query scheme and also our data aggregation algorithms. Our 

autonomous histogram generation scheme is scalable and 

fast.  

B. Future Work 

When a part of a polygon is barely contained within a 

geohash, we visualize it in the same manner as if the entire 

geohash was covered. Instead, we could divide this one 

geohash box further, and get a more precise geo tile. This 

way, the visualization is more precise in the exact area it is 

showing.  

Another area we could expand on is our autonomous 

histogram generation. Some of the features in the dataset we 

are using are categorical, rather than numerical, and if we try 

to aggregate these values using a numeric scheme, we are not 

going to have good results. Instead of creating a histogram 

spanning a series of numbers, we want to have counts of 

different categories. The research problem lies with deciding 

whether a set of numeric data is categorical or not. 

Figure 7 – The time taken during various phases of GeoLens. 
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