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Abstract—Efficient access to voluminous multidimensional 

datasets is essential for several scientific applications, including 

real-time analysis and visualization. Fast evolving datasets 

present unique challenges during retrievals. Keeping data up-

to-date can be expensive and may involve the following: 

repeated data queries, excessive data movements, and 

redundant data preprocessing. This paper focuses on the issue 

of efficient manipulation of query results in cases where the 

dataset is continuously evolving. 

Our approach provides an automated and scalable tracking 

and caching mechanism to evaluate continuous queries over 

data stored in a distributed storage system. Among the storage 

nodes, one or more nodes are selected using an election 

algorithm based on CPU and memory utilization. These selected 

nodes ensure that the query output contains the most recent 

data arrivals and cache the metadata of the query output. This 

approach is evaluated in the context of Galileo, our distributed 

data storage framework. Galileo is designed for managing 

multidimensional time-series datasets generated in geospatial 

observational settings; e.g. data generated by remote sensing 

equipment and sensor networks.  

We describe our approach of using the metadata graph to 

push data preprocessing jobs onto the storage system during the 

continuous query processing and selectively download subsets 

of the query output. Our performance benchmarks demonstrate 

the efficacy of our approach. 
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I. INTRODUCTION 

In recent years, we have witnessed significant increase in 

the data collected from sensor networks, observational 

equipment and social network applications. These streaming 

data enable real-time monitoring and control, where 

decisions are based on analyzing voluminous, dynamic data. 

The data from these data sources are often staged into a data 

storage system continuously at a very high rate. To retrieve 

the most recently added data items within a fast evolving 

dataset, users might need to issue similar queries frequently. 

It is possible that no new results might be available between 

such successive queries. Repeatedly issuing the same query 

is not scalable due to the increase in query traffic, a problem 

that is exacerbated if there are a large number of clients. 

With traditional data retrieval methods, query evaluations 

provide a snapshot of a subset at a given time.  

A continuous query is one where the query is long-lived 

i.e. it lives beyond the instant when it was first issued and the 

results made available.  In continuous queries once the initial 

set of results is made available, newly arriving data items 

that “match” the query are sent back to the client in an 

incremental fashion.  Put another way, a continuous query is 

a query that is issued once and then logically run 

continuously over the datasets. This concept has been 

investigated within the database community [1] and recently 

in cluster-based storage systems [2, 3]. It has also been 

explored in real-time data mining systems [4]. Continuous 

queries can be useful for monitoring events such as traffic, 

network performance, and financial trend analysis.   

Designing a scalable scheme for the evaluation of 

continuous queries over high-dimensional datasets has been a 

challenge [5]. As data is integrated from many sources, the 

amount of the accumulated data grows. There is also the 

complexity of applying advanced data filters to the output of 

continuous queries. Data filters such as sampling algorithms 

or data interpolation algorithms are important not only to 

improve data quality but also to reduce data transfers 

significantly.  

In this paper, we focus on a framework for evaluating 

continuous queries at scale. We address this problem from 

the aspect of a distributed storage framework. We cache the 

query and its results in distributed storage nodes and 

autonomously maintain the cached result to include the most 

up-to-date data. Compared to real-time data stream mining 

over incoming data [6], evaluating continuous queries within 

the storage subsystem has the following advantages: (1) 

queries can be evaluated over features and values across the 

entire datasets, and (2) query evaluation is not limited by the 

window size. Therefore, in addition to the nearly real-time 

monitoring purpose, scientist can use this feature for more 



complex analysis over the integrated dataset. Our approach 

also allows the query evaluation to apply advanced filtering 

algorithms. During the query evaluation process, pre-defined 

and user-defined data filters can be applied to the query 

results. Finally, the query result can be a selective subset of 

the voluminous dataset containing near-real time updates and 

it can also be reduced by means of applying filters such as 

sampling algorithms with a suitable resolution based on the 

client‟s resource.   

We evaluate our ideas in the context of our Galileo 

system [7-10]. Galileo is a scalable storage framework for 

managing multidimensional geospatial time-series data for 

scientific applications. Data stored and retrieved from 

Galileo include blocks that are multi-dimensional arrays with 

temporal information alongside geospatial locations. Users 

access datasets by specifying multi-dimensional queries that 

specify bounds or wildcards for one or more dimensions 

corresponding to the observations/features stored within the 

system. When new data packets representing observations 

arrive, it can be added to an existing physical data file or a 

new data file can be created for the dataset. 

A.  Scientific Challenges 

We consider the problem of efficient and scalable 

evaluation of long-term continuous queries over voluminous, 

multi-dimensional datasets. The challenges in this research 

include the following: 

 Data arrives at high rates from a large number of 

sources. This results in a voluminous dataset that 

should be dispersed and managed over multiple 

resources. 

 The approach should scale with increases in the 

number of clients, data volumes, and resources. 

 There may be no bound associated with the 

chronological dimensions specified in the range 

queries.  

 Repetitive queries from the client over the entire 

dataset can be very expensive. The data storage 

framework should be able to logically track which 

portions of the query results need to be updated. 

 Distributed data structures should be expressive to 

define subsets of data to allow users to schedule 

downloads and apply user-specified data filters. 

 Redundant download of results from continuous 

queries will increase computer network traffic; 

efficient query management to track the user‟s query 

is critical. 

B. Research Questions 

Core research questions that we explore in this paper 

include the following: 

 How can we evaluate and track queries over 

voluminous datasets, especially in the case of 

continuous data arrivals and additions to the dataset 

over a collection of machines? 

 How can we strike a balance between managing 

continuous query evaluations in a scalable fashion 

while supporting near real-time state updates to the 

query results?   

 How can we avoid hotspots associated with query 

workload tracking? 

 How can we provide an efficient scheme to allow 

users to browse and interact with query results? 

 How can we support data filtering algorithms over 

continuous, fast-evolving query results? 

 And, how can we control the lifetimes associated 

with query tracking? 

C. Overview of Approach 

The approach described here is based on our distributed 

storage framework, Galileo [7-10]. Galileo is a hierarchical 

distributed hash table (DHT) implementation that provides 

high-throughput management of voluminous 

multidimensional data streams. Datasets arriving in Galileo 

are partitioned and dispersed over a cluster of commodity 

machines. Data is dispersed by the system based on the 

Geohash geocoding scheme to ensure geospatial proximity of 

proximate data points. Query evaluation in Galileo is 

performed over the metadata residing in the memory at each 

storage node and query results are represented as a set of 

metadata. Galileo organizes relations between components of 

the metadata using a graph data structure.  

To support continuous queries, we provide a distributed 

updatable cache over the storage nodes. We define a 

distributed updatable cache as a query caching feature that 

autonomously tracks the most recent addition to the query 

output in a distributed fashion over the storage nodes within 

the system. A storage node is assigned to cache the 

continuous query output using an election algorithm, and we 

call this node cached continuous query coordinators. Cached 

continuous query coordinators are selected from among the 

storage nodes based on their memory and CPU utilization. 

The cached continuous query coordinators perform the 

queries periodically over the metadata of datasets and detect 

any update of data blocks. As part of the initial response to a 

continuous query, the client receives the result (metadata) 

based on initial evaluation over the stored dataset, an 

identifier for the query, and the address of the cached 

continuous query coordinators.  

The metadata of the current output of the continuous 

query is retrieved, as the client desires. Clients are allowed to 

select a portion of query result to download or apply data 

filters such as sampling algorithms. Sampling of query 

output is a critical feature for the applications that support 

multiple resolutions for the same dataset. Users can apply 

built-in sampling algorithms and also push their own data 

preprocessing onto nodes that hold the data. The cached 

continuous query coordinators propagate these customized 

data preprocessing to the storage nodes within the system 

that hold data blocks satisfying a particular query.  

D. Paper Contributions 

This paper presents the design of a storage subsystem 

supporting continuous query evaluations over a time-series 

dataset. We use a distributed updatable cache to track the 



updates of query results. Caching is performed by a subset of 

storage nodes selected based on the current workload. Users 

retrieve only updates of the query results. We use metadata 

from the matching data blocks to describe the query outputs. 

The components of the metadata (e.g. features, timestamps, 

geo-location) are organized as a graph. The metadata graph 

provides complete access to the data blocks used in Galileo. 

The metadata graph allows users to utilize the information 

stored in the nodes of the metadata graph to group the data 

blocks. The storage subsystem provides protocols to launch 

the user-defined preprocessing on a selected group of data 

blocks; this process is automatically performed during 

caching. This paper also presents the evaluation 

measurements of the overhead for maintaining distributed 

updatable cache and user-defined data process over the query 

output.  

E.  Paper Organization 

The remainder of this paper is organized as follows. In 

section 2 we provide an overview of related work. In section 

3, we include a description of the architecture and query 

processing capabilities of our system, Galileo. In section 4, 

we describe our framework for tracking and maintaining 

continuous query to reflect the most recent update of dataset. 

Section 5 describes the interactions between query outputs 

and sampling framework for reduction of output sizes. A 

performance evaluation of various aspects of the system is 

presented in Section 6. Finally, conclusions and future work 

are outlined in Section 7.  

II. RELATED WORK 

Considerable work on continuous queries has been 

conducted previously. Most on-going work can be boiled 

down into three distinct flavors of continuous queries: 

storage based, data stream based, and real-time database 

approaches. While Galileo fits in closer to the storage based 

methodology, it shares characteristics with work from all 

three areas. 

Amazon Kinesis [3] is Amazon‟s new project that is 

rapidly growing in popularity. Kinesis provides a fully 

managed, high-throughput data stream processing 

framework. It enables sophisticated data stream processing in 

real-time that plugs into their existing data stores. By 

partitioning data among their resources using an MD5 hash, 

the Kinesis system allows for even load distribution among 

the shards allocated to the stream processing application. 

Unlike Galileo‟s distributed updatable cache, Kinesis keeps a 

24-hour sliding window over the streamed data. After this, 

data records are no longer accessible and are potentially lost 

if not placed in persistent storage. Because of this, Kinesis is 

unable to efficiently see a holistic view of the data while 

processing streaming records. 

NiagaraCQ [2] supports continuous querying in the vast 

context of the internet. It leverages similarity in continuous 

web queries by grouping and sharing common computations. 

It employs a similar continuous query model as Galileo‟s 

distributed updatable cache. A web crawler is deployed to 

generate a highly optimized xml database for querying. 

When a continuous query is established, a handle is placed 

on the relevant XML documents, so that only updated 

portions of the document are considered for their incremental 

evaluation. NiagaraCQ is focused on the domain of the 

internet and does not support sensor network streams. 

Borealis [4] is a stream processing engine focused on 

timely analysis over high rate, sensor network data streams. 

Its approach, like Galileo‟s, emphasizes dynamic interactions 

with queries and results by adding interactions with the 

sliding window over the data stream. In many scenarios that 

arise with data streaming, modification of the results or the 

query itself are desired. Borealis utilizes a network of stream 

operators and scheduling framework to delay processing of 

data records during periods of high loads and allow for in-

place modifications of queries already being evaluated. Due 

to the lack of storage, as with most sliding window data 

streaming engines, Borealis is limited by the size of the 

window over the stream. While they partially cope with this 

challenge with their connection point snapshot views, ad-hoc 

queries on historical data are not feasible. 

BeeHive [11, 12] is an application focused real-time 

global database system. Queries in a real-time database 

system face the challenges of meeting strict deadlines in their 

retrievals. BeeHive accomplishes by precisely managing 

resources, scheduling evaluations, and providing a series of 

different evaluation resources to asses a variety of query 

types efficiently. It provides APIs to request for specific time 

requirements on queries. The strict assurances it delivers 

restrict the ability to process data as it arrives at high rates. 

III. BACKGROUND: GALILEO SYSTEM OVERVIEW 

Galileo is a distributed data storage system for 

voluminous multi-dimensional, geospatial, time-series 

datasets. Galileo is designed to assimilate observational data, 

which arrive as streams, from measurement devices such as 

sensors, radars, and satellites. Data is dispersed and stored 

over a distributed collection of machines. As soon as a 

dataset (or a portion thereof) arrives, the dataset is 

transformed to one or more storage unit(s): block(s). Data 

blocks are dispersed using an indexing scheme applied on the 

major dimensions such as geospatial coordinates and 

temporal information accompanying the measurements.  

A. Network Topology 

Galileo‟s topology is organized as a zero-hop distributed 

hash table. DHT‟s provide a decentralized, highly scalable 

overlay network that allow for insertions and retrievals 

similar to that of a hash table; e.g. put(key, value), and 

get(key). The class of zero-hop DHT‟s, such as Apache 

Cassandra [13] and Amazon Dynamo [14], provide enough 

state at each node to allow for direct routing of requests to 

their destination without the need for intermediate hops. 

Galileo deviates from the standard DHT in that it employs 

a hierarchical node partitioning scheme. This scheme 

leverages characteristics of the data elements to map related 

data on or near the same node. Each storage node within the 

system is placed in a group. The size and quantity of groups 

are a user-configurable parameter that can be adjusted to best 



fit the data stored. The two-tiered partitioning structure, 

where nodes are first placed in groups among similar nodes, 

then hashed within that group, increases the efficiency of 

retrieval operations by providing data locality for query 

evaluations. The data locality also expands data interactions 

beyond the put(key, value)/get(key) into more expressive 

queries such as range-based, wild card, polygon, and 

approximate queries.  

B. Metadata 

Instead of using notions of files and directories, the units 

of encapsulation specified in user queries are the features that 

describe the dataset. To narrow the search space and to 

effectively evaluate queries, each node maintains two in-

memory metadata structures: a low-resolution feature graph 

that encompasses the entire dataset and a high-resolution 

metadata graph representative of the data stored within that 

particular node. A typical query evaluation process is as 

follows: a query is issued to any single node in the system 

which, in turn, uses the low-resolution feature graph to 

construct a set of candidate storage nodes possibly holding 

data relevant to the specified query. The candidate nodes 

then exhaustively evaluate the query at higher-resolutions to 

retrieve any data blocks that match the specified query. 

Matching blocks are streamed asynchronously to the issuing 

client. 

The high-resolution metadata graph follows a hierarchal, 

tree-like structure where each level of the tree corresponds to 

an indexed feature of the data and the leaves of the tree 

contain the data access information needed for retrieval. 

Traversing the graph from root to leaves will discover data 

that has the properties aggregated along the path, whereas 

traversing the graph from leaf to root will provide the entire 

indexed feature information for the data block represented by 

the leaf. This structure provides many benefits in terms of 

efficiency of operations and interactivity with the results. By 

grouping like paths or sub paths, duplicate metadata is 

avoided and query evaluations following one path returns 

many results. Once a query is evaluated, the metadata graph 

can be traversed, reoriented, and/or partitioned to precisely 

extract the quantity of results and their various attributes 

without ever reading data from the disk.  

Figure 1 depicts a simple metadata graph consisting of 

three features: spatial location, humidity, and temperature. In 

this example, all data points share the same spatial 

characteristic of residing with the 9Q Geohash, discussed in 

the next subsection. The second level here corresponds to the 

humidity attribute of the data. As we traverse down the left –

most path to data block 1, we observe that data points within 

that block: reside in 9Q Geohash, have 70.5% humidity, and 

is 28.9 °C. From this we can tell that this data point is 

describes a location that is moderately humid and hot.  

 
Fig. 1.  Example of a simple metadata graph. This is an example 

metadata of a dataset using three features to index data blocks: Spatial 

geohash code, humidity, and temperature. The data block 4 contains dataset 

that has 71% humidity with a temperature of 32.1 °C for the geospatial area 

9Q that is mostly southern California and a large portion of Nevada, USA. 

 
 

Because the bottom level contains data block locations 

that are fixed within the storage node, it is possible to have 

multiple edges to the same leaf. This is observed in data 

block 3 that is connected to two different temperatures. 

C. Geohashing and Storage of Data Streams 

Galileo supports streaming data that incrementally enters 

the system from a variety of sources. These data items are 

constantly evolving over time and can share a number of 

common attributes. Therefore, simply applying a standard 

hash function on the incoming data results in an 

approximately even distribution of files across all the nodes 

in the system, but does not account for similarity in the data 

being stored. We employ the Geohash algorithm [15] as the 

first tier hashing function to partition geospatially similar 

data points to the same group.  The Geohash algorithm 

divides geographic regions into a hierarchical structure. A 

Geohash is a string derived from a latitude and longitude 

coordinate. Each Geohash string represents a bounding 

spatial box. The length of the string corresponds to the 

precision of the box; a longer string denotes a more precise, 

or smaller, bounding box.  For example, the latitude-

longitude coordinate N40.57, W105.08 is bounded by the 

Geohash 9XJQBCE. Appending characters to the string 

would make it refer to more precise geographical subsets of 

the original string. Figure 2 [9] illustrates how regions are 

divided into successively more precise bounding boxes. The 

Geohash regions provide a natural mechanism to partition 

geospatially similar data to the same group. 

Inspecting the spatial dimensions present in incoming 

data streams facilitates our controlled dispersion strategy by  

creating logical groupings of data in the hash space, but also 

increases the likelihood of storage imbalances across nodes 

in the system [7]. Using a hierarchical approach allows a 

balance to be struck; placing logically similar data items in 

the same groups and then using a second hash function based  
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Fig. 2. An illustration of the recursive subdivision of a Geohash bounding box. By adding one base-32 character to the Geohash value, a spatial area is subdivided 
into 32 sub-blocks. Each of the characters represents interleaving 5 bits that separate the latitude and longitude intervals. 

 

 

on a feature of the data to place it on specific nodes within 

the groups. While hierarchical node partitioning imposes a 

less balanced load distribution, the range of the data 

dispersion between the two-tiered partitioning and a flat 

SHA-1 hash is only 1% of the dataset [7]. 

IV.  DISTRIBUTED UPDATABLE CACHE 

In an environment where data evolves at a fast rate, 

challenges arise when up-to-date query results are frequently 

needed. In many cases, clients must repeatedly reissue 

queries, filter out new data from the old, and perform 

redundant processing on the results. Caching is a known 

solution to many similar problems; however, massive data 

volumes introduce many complications to the simple caching 

model. 

 In general, query caching is performed when the user‟s 

data do not change very often and it is particularly useful 

when the server receives many identical queries that reflect 

recent changes. Our design is also differentiated from the 

existing updatable cache in terms of the underlying 

topologies of the storage nodes. The distributed updatable 

cache should perform query caching to cope with the nature 

of the dispersed data over a large number of storage nodes. 

In-memory management of these caches is also essential to 

address the gap in the random access performance between 

main memory and disks. This section will discuss the 

architecture and algorithm used in the distributed updatable 

cache to handle these challenges.  

A. Cached Continuous Queries 

When considering continuous queries over data streams 

there are many existing techniques for evaluation such as 

sliding windows, sampling, synopsis data structures, or batch 

processing [6]. Each technique has usage scenarios for which 

it performs well and for which it performs poorly. For 

example, numerous live monitoring applications require 

prompt, time-independent analysis of streaming data. 

Because the entire history of the stream is not needed for the 

analysis, sliding windows are attractive solutions for 

approximate answers to continuous queries. Conversely, in 

settings where the analysis performed is dependent on 

historical data, sliding windows perform poorly. Galileo 

Cached Continuous Queries (CCQ) strive for a holistic 

evaluation and thus employ a combination of two techniques: 

batch processing, where data aggregates over a short time 

interval and is processed in groups, and data synopsis, where 

a sketch, or synopsis, of the data is maintained and queried. 

A CCQ encompasses the standard Galileo query with the 

addition of two vital parameters: an expiration time and an 

update interval. These two attributes express duration for 

which the continuous evaluation should be performed and 

the interval at which each processing cycle will be executed. 

Once a CCQ is dispatched, the initial query is evaluated and 

among the query‟s candidate nodes, an election phase, 

discussed subsection E, is performed to select a node to 

administer the CCQ. In addition to the initial evaluation, the 

client receives the information for the node elected to 

manage the CCQ. 

B. Cached Continuous Query Coordinator 

The storage node selected to maintain the CCQ spawns a 

cached query coordinator that directs all operations with 

cached queries on the node. As illustrated in Figure 3, a 

cached query coordinator consists of four main components, 

CCQ tracker, cache table, query processors, and election 

processors. Upon receiving a new CCQ, the CCQ tracker 

will schedule and initiate the CCQ‟s processing cycles 

according to the specified update interval. The value of the 

update interval determines the window of accuracy in the 

results. The query results will be at most the update interval 

time value out-of-date.  

At the end of each cycle, the cached query coordinator is 

responsible for aggregation, compression, and caching of the 

results into the cache table. If a single cache grows too large, 

the tracker triggers an election phase to choose a nearby node 

that has available resources to take over the cache. An 

election processor is spawned to execute the election phase 

and update the tracker and cache tables with the results. Each 

of these tasks is discussed in detail in the subsequent 

sections.  



C. Processing Cycles 

The fundamental technique in our continuous query 

evaluation lies in the batch processing cycle. A batch 

processing sequence, initiated by the CCQ coordinator, 

occurs for each CCQ at their respective intervals. The query 

is reissued to the system and evaluated in a streamlined 

fashion.  

As a result of the redundant nature of continuous queries, 

nodes involved with a CCQ can perform optimizations 

during its reevaluations. Cached queries repeatedly explore 

the same area of the metadata graph and therefore the nodes 

evaluating them can omit large portions of unrelated graph 

extents to improve performance. Each query candidate node, 

obtained from the feature graph, returns its result to the CCQ 

coordinator for compaction, also derived from the metadata 

graph. 

D. Leveraging the Metadata Graph 

One of the goals of the distributed updatable cache is to 

preserve the data interactivity that Galileo provides via the 

metadata graph. While simply caching file block identifiers 

and access information is compact and efficient, the end 

result is an array of filenames which require direct data 

accesses to extract any information. Instead, we leverage the 

current metadata graph in two essential ways to maintain the 

interaction. 

First, the graph is utilized as a synopsis data structure for 

all the data stored on a node. Since the CCQ coordinator 

dispatches the cached query only to the candidate nodes, we 

are able to narrow down the search space immediately. The 

dispatching to the multiple candidate nodes is performed in 

parallel. By lowering the dimensionality of the data to only 

the indexed features, requests can be calculated in near-real 

time. 

The metadata graph also provides a canonical naming 

scheme for paths that can be utilized as a method of data 

compaction. Since every path from root to leaf is unique, a 

discrete path name can be created for each file block. While 

traversing from the root to a leaf, vertices at each level 

concatenate its payload to the initially blank name on the 

way down. The end result is a distinct, static label that 

represents all the metadata associated with the file block. 

This label can be reconstructed into a metadata path and, in 

turn, a metadata graph as depicted in Figure 4. This 

technique preserves the tree like aspects of the query results 

that allow client interaction. These compact path labels are 

cached for each query result.  

E. Metadata Path Label Caches 

For each re-query result the CCQ coordinator receives, a 

set of path labels is constructed and cached locally. Local 

caches introduce new complications such as only caching 

new data, minimizing cache sizes, and defining maximum 

cache size thresholds.  

1) Caching Recent Data 

To ensure only data that has arrived since the previous 

processing cycle is stored, the CCQ coordinator uses a 

simple timestamping technique. Every data block that enters 

the system has an associated timestamp that is updated 

anytime a block is modified. The CCQ coordinator maintains 

a time stamp for each tracked CCQ that indicates the time 

since the last client retrieval. A filter is applied during the 

query evaluation that drops any data blocks whose timestamp 

is before the coordinator‟s timestamp.  

2) Local Cache Compression 

While each label is compact, cached queries with large 

outcomes can potentially thrash the main-memory of the 

caching node. To cope with this, CCQ‟s provide an optional 

parameter that introduces compression into the caching 

process. When enabled, each label cache is streamed through 

a LZW compression [16] algorithm to reduce the volume of 

the cache. Due the redundant nature of the cache label 

content, the high-performance LZW cache achieves excellent 

compression as shown by Table I.  Compression comes with 

a temporal cost and is not optimal in environments requiring 

concise response times. Thus, we‟ve made this an optional 

feature to best fit end user‟s needs. 
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Fig. 3. Galileo‟s continuous query architecture. Each of the Galileo nodes manages a Cached Continuous 
Query Coordinator. This Coordinator comprises the following: Tracker, Cache table, query processors and 

Election Processor. 



 

 

 
 

Fig. 4.   The compaction and expansion of a metadata graph path. The data 

compaction process provides a flattened representation of the metadata to 

maintain and track the dataset for continuous query effectively. Since it 
preserves the semantics of the metadata, it is easy to merge the sub-graph 

with the original query results when necessary. 

 
 

TABLE I.  
COMPARISON OF QUERY RESULT SIZES 

Number of 
Results 

Original size 
(kilobytes) 

Compacted Size 
(kilobytes) 

Compressed Size 
(kilobytes) 

1,000 102.383 27.483 7.624 

100,000 10,187.88 2,743.549 720.745 

 

 

 

3) Dynamic Cache Size Thresholds 

Even in our best efforts in reducing the volume of query 

output, large outcomes will eventually exceed a system‟s 

memory boundaries. It is not feasible to expect a single 

storage node‟s main memory to be sufficiently large. To 

determine when a cache should be distributed, each cache 

has a dynamic threshold based on a variety of usage statistics 

such as available memory, CPU usage, node popularity, and 

presence of other CCQs. If this threshold is exceeded, the 

coordinator will initiate an election phase to select a new 

node to take over the future cache entries.  

As the state of the nodes progress this threshold 

dynamically adjusts to maintain a balanced workload 

throughout the cluster. For example, the introduction of a 

second CCQ will decrease the threshold of the existing one; 

forcing an election phase to redistribute the overflowed cache 

and maintain equilibrium. 

This approach has a ceiling in terms of memory, as 

ultimately we are bounded by the total memory within the 

cluster. To reach it, however, takes a bit of work. If a cached 

query, for example, yields one billion results, the distributed 

updatable cache system needs 7.3 gigabytes of system wide 

memory to cope with the continuous query without ever 

going to disk. Future work, discussed in the final section, 

includes ways to push this boundary even higher. 

F. Election Algorithm 

The final piece to our solution is the election phase. Like 

the processing cycle, the election phase also leverages 

Galileo‟s architecture to optimize performance. Once 

initiated, the node will broadcast an election poll to all the 

nodes within its hierarchical grouping. If all of the responses 

fail to meet the needs of the CCQ, the poll is extended 

further to another group in the Galileo cluster. Broadcasting a 

poll to the entire cluster simultaneously, would result in a 

bottleneck of communication when cluster sizes grow large. 

This approach of polling for a localized optimum provides a 

scalable election. 

As a response to an election poll, a storage node will send 

the same usage statistics used in the cache threshold 

calculation (available memory, CPU usage, node popularity, 

CCQ count) back to the initial coordinator. Based on the 

incoming statistics and their respective round trip times, each 

response is ranked. The top rank is selected to be responsible 

for the future portions of the CCQ cache. 

The coordinator tracks the newly elected node in its 

respective CCQ table entry. Each additional elected storage 

node will update the original coordinator about their 

affiliation with the query. As a CCQ cache propagates 

through the storage nodes exactly one coordinator, the most  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. A high-level overview of the distributed updatable cache and cached 
continuous query progession. First targeted nodes for the election phase are 

the nodes in the same group. If all of the nodes in the group are overloaded, 

the election process will be encompass other groups based on the workloads 
and the network latency. 
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recently elected, will initiate processing cycles.   

Figure 5 shows a high level view of the distributed 

updateable cache and the CCQ processing flow. An end user 

defines and submits a CCQ to any of the storage nodes in the 

Galileo cluster. Upon receiving the query, the storage node 

evaluates the query periodically and compacts the results 

using the metadata graph canonical naming scheme into path 

labels. The compacted path labels are cached locally in a 

dynamically sized store. If the cache overflows, an election 

phase is conducted to choose the locally optimal node to 

maintain newest data in the cache. 

G. Client Interaction 

Upon direct request, anomalous event, or any other 

trigger, the CCQ coordinator will request all the elected 

nodes to send their caches. Upon arrival, the coordinator 

aggregates each cache to reconstruct a single metadata graph. 

This metadata graph is identical to that of a standard query 

result, and thus, the entire process is transparent to the client. 

Retrieval for cached continuous queries is more responsive 

than a standard query because no evaluations are needed. The 

client receives immediate, up-to-date data that can be 

combined with data previously accumulated to conduct their 

studies. After client retrieval, all caches are cleared and the 

process is repeated until the CCQ expires. The caches are 

purged from the memory once the CCQ expires. 

As the client receives the metadata graph response from 

any query, the graph is converted to the resource description 

framework [17] (RDF) data model. Data in RDF is 

represented by subject-predicate-object triples, where a 

subjects and objects refer to the resources and predicates 

describe the relationships between them. The RDF model can 

be conceptualized as a directed graph with named edges. 

Vertices in the graph represent subjects and objects, and 

named edges represent the predicates. For example, if an 

edge links vertex P to vertex Q, P has the property Q. 

Galileo‟s metadata graph lends itself nicely to this RDF 

directed graph model. By directing edges in the metadata 

graph downwards towards the leaves and assigning predicate 

of parent-of completely describes the data. This 

conversion schema allows for the utilization of the graph 

query language SPARQL to create customized views of the 

metadata graph to explore the data and create sub-queries. 

SPARQL [18] is a rich querying language for RDF. 

Conjunctions, disjunction, triple patterns, and joins are 

among many of the types of query supported by SPARQL. 

By converting the metadata graph to RDF, SPARQL queries 

can be performed to obtain any subset of vertices or to 

specify a subgraph upon which to do further preprocessing 

and analysis.  

H. Fault Tolerance  

Distributed storage systems are often comprised of large 

numbers of commodity machines to reduce the hardware 

costs. Consequently, node and disk failures occur frequently 

and cannot be brushed under the rug as an anomalous event. 

One common technique for coping with these failures 

involves assigning replica data to multiple other nodes within 

the cluster and if a failure occurs, route the request to one of 

the replicas. The downside of this technique is the storage 

requirements involved with replicating this information 

across one or more nodes. In an environment constrained by 

memory, such as ours, this solution does not scale.  

Our approach to handling failures is derived from the fact 

that all data streamed into the system is stored and can be 

accessed at any time. Each time a processing cycle 

distributes its query for evaluation, the storage nodes 

receiving the CCQ keep track of three fault tolerance data 

items: (1) the location of the coordinator for the CCQ, (2) the 

CCQ itself, and (3) the timestamp used as data recency filter, 

previously described in subsection E1. When a failure is 

detected, affected coordinators can be determined by 

checking the tracked coordinator location data at each node. 

If a coordinator has failed, a new coordinator is elected via a 

standard election phase. The new coordinator reestablishes 

the CCQ with the parameters obtained from the stored fault 

tolerance data. The stored timestamp ensures the consistency 

of the new label cache with that of the failed coordinator. 

The new coordinator informs the client that it is the new 

access point for the CCQ.  

V. SAMPLING QUERY RESULTS 

Many applications, such as data visualization, require the 

investigator to sample the data after its acquisition from the 

server; however, downloading the entire query output just to 

filter out a large portion is inefficient. To cope with this 

limitation, as part of this effort we incorporate a framework 

by which clients can provide a user defined sampling 

function (UDSF) to acquire a sample of the data desired 

without downloading it first. 

Because sampling is often a domain specific function, we 

provide a mechanism to devise a personalized sampling 

function to be executed on the cluster. An interface defines 

the structure for the UDSF to be implemented to ensure  

compatibility. The client then separately implements, 

compiles, and compresses the UDSF into a Java ARchive 

(JAR) file to be sent with the query to the server. After a 

query is evaluated, rather than dispatching the entire dataset 

over the network to the client, the JAR is written locally to 

the server, loaded dynamically, and applied to the evaluated 

query. 

In the cached continuous query framework, the UDSF is 

loaded and evaluated as normal during the processing cycle. 

Data blocks are filtered out first by timestamp, to ensure a 

fair sample, and then by the dynamically loaded UDSF. The 

sampled results are returned to the coordinator and the rest of 

the CCQ process continues as normal.  

VI. PERFORMANCE EVALUATION 

To benchmark the effectiveness of our continuous query 

framework, we sourced real-world data from the North 

American Mesoscale Forecast System (NAM) [19], which is 

maintained by the National Oceanic and Atmospheric 

Administration (NOAA). The NAM is run four times daily,  



 
 
Fig. 6.   Comparison of retrieval performance of queries of varying sizes 

between standard and continuous cached queries. 
 

 

and we sampled data recorded from 2009-2012 using our 

NetCDF input plugin to generate a dataset containing one 

billion (1,000,000,000) Galileo blocks, each of which is 8 

kilobytes. The data attributes we indexed and queried against 

included the spatial location for the sample, temporal range 

during which the data was recorded, percent maximum 

relative humidity, surface temperature (Kelvin), wind speed 

(meters per second), and snow depth (meters).  

We composed a series of test scenarios to measure three 

main aspects of our design: speed, memory consumption, 

and continuous retrieval throughput. Each experiment was 

conducted 100 times in our heterogeneous 75-node cluster 

composed of 47 HP DL160 servers (Xeon E5620, 12 GB 

RAM, 15000 RPM Disk) and 28 Sun Microsystems SunFire 

X4100 servers (Opteron 254, 8 GB RAM, 10000 RPM 

Disk).  

To ensure the continuous cached queries performed as 

expected, we ran a series of retrieval throughput benchmarks 

in comparison with Galileo‟s standard query evaluation 

method. Figure 6 compares the retrieval times of the two 

querying techniques over a number of file block results. By 

altering the query parameters, we adjusted the number of 

returned file blocks to range from 0 to 10,000. These results 

demonstrate that the time costs of compression, caching, and 

reassembly are less than that of distributing queries to nodes 

in parallel, then aggregating results; as the standard method 

does. 

While promising, the previous benchmark exemplified 

that caching can indeed make things faster, which is to be 

expected. In this context, the challenge is to attain the 

speedups caching can provide while maintaining a small 

memory footprint. To examine the memory efficiency of our 

continuous query framework, we reduced the volume of the 

dataset 1,000,000 file blocks to increase the severity of the 

memory increases we will incur. This benchmark involved 

issuing 10 distinct CCQ‟s yielding 100,000 results each; 

doubling the number of represented in-memory file blocks. 

To measure the memory discrepancy, we populated the 

cluster with the one million file blocks and measured the 

memory usage without the presence of any cached queries.  

Subsequently, all 10 CCQ‟s were dispatched and the memory 

usage was measured once again, after the CCQ‟s were able 

to equilibrate. Figure 7 represents the percentage of change 

in memory usage before and after the CCQ‟s were issued on 

a node by node basis. If no memory changes were realized, 

the chart would appear as two identical rectangles meeting at 

the 0% line. Each “after” bar that drops below the 0% mark 

indicates a memory increase on that particular node caused 

by the distributed updatable cache. The magnitude of this 

increase is denoted by how far below it drops. It is clear the 

memory requirements did not double despite doubling the 

number of represented in-memory file blocks. In fact, only 

an 11.71% increase was realized after the introduction of the 

10 cached continuous queries. 

Figure 7 displays the success of the election algorithm‟s 

ability to distribute the caches. Though the light bar troughs 

may seem random in location and length, recall that Galileo 

utilizes a two-tiered hashing scheme to distribute data 

initially. This means that from the start, the load distribution 

in memory is not even amongst the nodes. For instance, in 

Figure 7, the largest memory increase, the third large 

difference from the left, occurred on node 17; that had the 

smallest allocation in the initial distribution. The addition of 

one million represented file blocks increased the standard 

deviation of the distribution by .8602 megabytes.  

Our final benchmark targets the continuous retrieval process. 

We deployed a CCQ into an empty cluster, with the varying 

update intervals and streamed in blocks that match the query. 

At three second intervals, continuous query update retrieval 

is requested, the time and number of file blocks was 

recorded. A summary of the results can be found in Table II. 

Our batch processing technique allows for consistently fast 

retrieval times in the face of large query output volumes. 

Longer update interval times produce a large number of file 

blocks retrieved. This is because there is more time for 

incoming data blocks to accumulate before a processing 

cycle is initiated.  

 

 

 
Fig. 7.   Difference in memory usage after deploying 10 continuous cached 

queries having 100,000 results each over a dataset with 1,000,000 file 

blocks. 
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TABLE II. 
BENCHMARKS FOR VARIOUS CACHED CONTINUOUS QUERY SIZES 

Number of 
Blocks 

Streamed 

Average 
Retrieval 

Time (ms) 

Average Number of Blocks per 
Update Interval 

1 s 5 s 10 s 

1,000 100.66 330 384 595 

100,000 109.05 423 515 615 

1,000,000 177.85  411 506 522 

Because only updates since the most recent retrieval are 

returned each time, the volume of the data transfers are 

minimized which greatly improves the performance versus 

downloading all of the redundant data.  

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions 

Cost-effective access to voluminous multidimensional 

datasets is a challenging problem when the data is evolving 

quickly. Keeping things up-to-date can be expensive and 

may involve the repeated data queries, excessive data 

movements, and redundant data preprocessing. Our approach 

to solving this problem provides a scalable caching 

mechanism to evaluate continuous queries over data stored in 

Galileo, our distributed storage system. A cached continuous 

query defines our batch query processing parameters. The 

cache continuous query coordinator at each node is 

responsible for initiating the query at the defined intervals. 

Upon receiving results from other storage nodes, the 

coordinator aggregates, compresses, and caches the most 

recent results into the cache table.  

We benchmarked several aspects of our continuous query 

system such as the efficiency of our cache and compression 

mechanisms, the distribution of the election phase, and the 

throughput of our distributed cached continuous queries. Our 

benchmarks show the efficacy of our approach. 

B. Future Work 

Our vision of holistic continuous query evaluation has 

many ideas for improvement and expansion. With a memory 

limit in mind, the scheduled cached continuous query 

processing cycle displays a timely, repetitive pattern that we 

can leverage. By writing caches to disk, knowing they won‟t 

be needed until the next interval, we free memory for other 

queries or processing. As an interval for a cache on disk 

approaches, we can prefetch the contents before they are 

needed. This scheme could potentially expand the memory 

limit our approach imposes, particularly in environments 

with cached continuous queries possessing long update 

intervals.  

A far more flexible continuous querying scheme could be 

achieved by broadening our approach to incorporate some of 

the more common data stream processing techniques such as 

a sliding window over the incoming data. Such an 

implementation gives clients the choice of tradeoffs involved 

in the various continuous query techniques. 
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