
A Framework for Managing Continuous Query

Evaluations over Voluminous, Multidimensional

Datasets

Cameron Tolooee, Matthew Malensek, and Sangmi Lee Pallickara

Department of Computer Science

Colorado State University

Fort Collins, Colorado, USA

(ctolooee, malensek, sangmi)@cs.colostate.edu

Abstract—Efficient access to voluminous multidimensional

datasets is essential for several scientific applications, including

real-time analysis and visualization. Fast evolving datasets

present unique challenges during retrievals. Keeping data up-

to-date can be expensive and may involve the following:

repeated data queries, excessive data movements, and

redundant data preprocessing. This paper focuses on the issue

of efficient manipulation of query results in cases where the

dataset is continuously evolving.

Our approach provides an automated and scalable tracking

and caching mechanism to evaluate continuous queries over

data stored in a distributed storage system. Among the storage

nodes, one or more nodes are selected using an election

algorithm based on CPU and memory utilization. These selected

nodes ensure that the query output contains the most recent

data arrivals and cache the metadata of the query output. This

approach is evaluated in the context of Galileo, our distributed

data storage framework. Galileo is designed for managing

multidimensional time-series datasets generated in geospatial

observational settings; e.g. data generated by remote sensing

equipment and sensor networks.

We describe our approach of using the metadata graph to

push data preprocessing jobs onto the storage system during the

continuous query processing and selectively download subsets

of the query output. Our performance benchmarks demonstrate

the efficacy of our approach.

Keywords – Continuous Query, Galileo, Query caching, Time

series data

I. INTRODUCTION

In recent years, we have witnessed significant increase in

the data collected from sensor networks, observational

equipment and social network applications. These streaming

data enable real-time monitoring and control, where

decisions are based on analyzing voluminous, dynamic data.

The data from these data sources are often staged into a data

storage system continuously at a very high rate. To retrieve

the most recently added data items within a fast evolving

dataset, users might need to issue similar queries frequently.

It is possible that no new results might be available between

such successive queries. Repeatedly issuing the same query

is not scalable due to the increase in query traffic, a problem

that is exacerbated if there are a large number of clients.

With traditional data retrieval methods, query evaluations

provide a snapshot of a subset at a given time.

A continuous query is one where the query is long-lived

i.e. it lives beyond the instant when it was first issued and the

results made available. In continuous queries once the initial

set of results is made available, newly arriving data items

that “match” the query are sent back to the client in an

incremental fashion. Put another way, a continuous query is

a query that is issued once and then logically run

continuously over the datasets. This concept has been

investigated within the database community [1] and recently

in cluster-based storage systems [2, 3]. It has also been

explored in real-time data mining systems [4]. Continuous

queries can be useful for monitoring events such as traffic,

network performance, and financial trend analysis.

Designing a scalable scheme for the evaluation of

continuous queries over high-dimensional datasets has been a

challenge [5]. As data is integrated from many sources, the

amount of the accumulated data grows. There is also the

complexity of applying advanced data filters to the output of

continuous queries. Data filters such as sampling algorithms

or data interpolation algorithms are important not only to

improve data quality but also to reduce data transfers

significantly.

In this paper, we focus on a framework for evaluating

continuous queries at scale. We address this problem from

the aspect of a distributed storage framework. We cache the

query and its results in distributed storage nodes and

autonomously maintain the cached result to include the most

up-to-date data. Compared to real-time data stream mining

over incoming data [6], evaluating continuous queries within

the storage subsystem has the following advantages: (1)

queries can be evaluated over features and values across the

entire datasets, and (2) query evaluation is not limited by the

window size. Therefore, in addition to the nearly real-time

monitoring purpose, scientist can use this feature for more

complex analysis over the integrated dataset. Our approach

also allows the query evaluation to apply advanced filtering

algorithms. During the query evaluation process, pre-defined

and user-defined data filters can be applied to the query

results. Finally, the query result can be a selective subset of

the voluminous dataset containing near-real time updates and

it can also be reduced by means of applying filters such as

sampling algorithms with a suitable resolution based on the

client‟s resource.

We evaluate our ideas in the context of our Galileo

system [7-10]. Galileo is a scalable storage framework for

managing multidimensional geospatial time-series data for

scientific applications. Data stored and retrieved from

Galileo include blocks that are multi-dimensional arrays with

temporal information alongside geospatial locations. Users

access datasets by specifying multi-dimensional queries that

specify bounds or wildcards for one or more dimensions

corresponding to the observations/features stored within the

system. When new data packets representing observations

arrive, it can be added to an existing physical data file or a

new data file can be created for the dataset.

A. Scientific Challenges

We consider the problem of efficient and scalable

evaluation of long-term continuous queries over voluminous,

multi-dimensional datasets. The challenges in this research

include the following:

 Data arrives at high rates from a large number of

sources. This results in a voluminous dataset that

should be dispersed and managed over multiple

resources.

 The approach should scale with increases in the

number of clients, data volumes, and resources.

 There may be no bound associated with the

chronological dimensions specified in the range

queries.

 Repetitive queries from the client over the entire

dataset can be very expensive. The data storage

framework should be able to logically track which

portions of the query results need to be updated.

 Distributed data structures should be expressive to

define subsets of data to allow users to schedule

downloads and apply user-specified data filters.

 Redundant download of results from continuous

queries will increase computer network traffic;

efficient query management to track the user‟s query

is critical.

B. Research Questions

Core research questions that we explore in this paper

include the following:

 How can we evaluate and track queries over

voluminous datasets, especially in the case of

continuous data arrivals and additions to the dataset

over a collection of machines?

 How can we strike a balance between managing

continuous query evaluations in a scalable fashion

while supporting near real-time state updates to the

query results?

 How can we avoid hotspots associated with query

workload tracking?

 How can we provide an efficient scheme to allow

users to browse and interact with query results?

 How can we support data filtering algorithms over

continuous, fast-evolving query results?

 And, how can we control the lifetimes associated

with query tracking?

C. Overview of Approach

The approach described here is based on our distributed

storage framework, Galileo [7-10]. Galileo is a hierarchical

distributed hash table (DHT) implementation that provides

high-throughput management of voluminous

multidimensional data streams. Datasets arriving in Galileo

are partitioned and dispersed over a cluster of commodity

machines. Data is dispersed by the system based on the

Geohash geocoding scheme to ensure geospatial proximity of

proximate data points. Query evaluation in Galileo is

performed over the metadata residing in the memory at each

storage node and query results are represented as a set of

metadata. Galileo organizes relations between components of

the metadata using a graph data structure.

To support continuous queries, we provide a distributed

updatable cache over the storage nodes. We define a

distributed updatable cache as a query caching feature that

autonomously tracks the most recent addition to the query

output in a distributed fashion over the storage nodes within

the system. A storage node is assigned to cache the

continuous query output using an election algorithm, and we

call this node cached continuous query coordinators. Cached

continuous query coordinators are selected from among the

storage nodes based on their memory and CPU utilization.

The cached continuous query coordinators perform the

queries periodically over the metadata of datasets and detect

any update of data blocks. As part of the initial response to a

continuous query, the client receives the result (metadata)

based on initial evaluation over the stored dataset, an

identifier for the query, and the address of the cached

continuous query coordinators.

The metadata of the current output of the continuous

query is retrieved, as the client desires. Clients are allowed to

select a portion of query result to download or apply data

filters such as sampling algorithms. Sampling of query

output is a critical feature for the applications that support

multiple resolutions for the same dataset. Users can apply

built-in sampling algorithms and also push their own data

preprocessing onto nodes that hold the data. The cached

continuous query coordinators propagate these customized

data preprocessing to the storage nodes within the system

that hold data blocks satisfying a particular query.

D. Paper Contributions

This paper presents the design of a storage subsystem

supporting continuous query evaluations over a time-series

dataset. We use a distributed updatable cache to track the

updates of query results. Caching is performed by a subset of

storage nodes selected based on the current workload. Users

retrieve only updates of the query results. We use metadata

from the matching data blocks to describe the query outputs.

The components of the metadata (e.g. features, timestamps,

geo-location) are organized as a graph. The metadata graph

provides complete access to the data blocks used in Galileo.

The metadata graph allows users to utilize the information

stored in the nodes of the metadata graph to group the data

blocks. The storage subsystem provides protocols to launch

the user-defined preprocessing on a selected group of data

blocks; this process is automatically performed during

caching. This paper also presents the evaluation

measurements of the overhead for maintaining distributed

updatable cache and user-defined data process over the query

output.

E. Paper Organization

The remainder of this paper is organized as follows. In

section 2 we provide an overview of related work. In section

3, we include a description of the architecture and query

processing capabilities of our system, Galileo. In section 4,

we describe our framework for tracking and maintaining

continuous query to reflect the most recent update of dataset.

Section 5 describes the interactions between query outputs

and sampling framework for reduction of output sizes. A

performance evaluation of various aspects of the system is

presented in Section 6. Finally, conclusions and future work

are outlined in Section 7.

II. RELATED WORK

Considerable work on continuous queries has been

conducted previously. Most on-going work can be boiled

down into three distinct flavors of continuous queries:

storage based, data stream based, and real-time database

approaches. While Galileo fits in closer to the storage based

methodology, it shares characteristics with work from all

three areas.

Amazon Kinesis [3] is Amazon‟s new project that is

rapidly growing in popularity. Kinesis provides a fully

managed, high-throughput data stream processing

framework. It enables sophisticated data stream processing in

real-time that plugs into their existing data stores. By

partitioning data among their resources using an MD5 hash,

the Kinesis system allows for even load distribution among

the shards allocated to the stream processing application.

Unlike Galileo‟s distributed updatable cache, Kinesis keeps a

24-hour sliding window over the streamed data. After this,

data records are no longer accessible and are potentially lost

if not placed in persistent storage. Because of this, Kinesis is

unable to efficiently see a holistic view of the data while

processing streaming records.

NiagaraCQ [2] supports continuous querying in the vast

context of the internet. It leverages similarity in continuous

web queries by grouping and sharing common computations.

It employs a similar continuous query model as Galileo‟s

distributed updatable cache. A web crawler is deployed to

generate a highly optimized xml database for querying.

When a continuous query is established, a handle is placed

on the relevant XML documents, so that only updated

portions of the document are considered for their incremental

evaluation. NiagaraCQ is focused on the domain of the

internet and does not support sensor network streams.

Borealis [4] is a stream processing engine focused on

timely analysis over high rate, sensor network data streams.

Its approach, like Galileo‟s, emphasizes dynamic interactions

with queries and results by adding interactions with the

sliding window over the data stream. In many scenarios that

arise with data streaming, modification of the results or the

query itself are desired. Borealis utilizes a network of stream

operators and scheduling framework to delay processing of

data records during periods of high loads and allow for in-

place modifications of queries already being evaluated. Due

to the lack of storage, as with most sliding window data

streaming engines, Borealis is limited by the size of the

window over the stream. While they partially cope with this

challenge with their connection point snapshot views, ad-hoc

queries on historical data are not feasible.

BeeHive [11, 12] is an application focused real-time

global database system. Queries in a real-time database

system face the challenges of meeting strict deadlines in their

retrievals. BeeHive accomplishes by precisely managing

resources, scheduling evaluations, and providing a series of

different evaluation resources to asses a variety of query

types efficiently. It provides APIs to request for specific time

requirements on queries. The strict assurances it delivers

restrict the ability to process data as it arrives at high rates.

III. BACKGROUND: GALILEO SYSTEM OVERVIEW

Galileo is a distributed data storage system for

voluminous multi-dimensional, geospatial, time-series

datasets. Galileo is designed to assimilate observational data,

which arrive as streams, from measurement devices such as

sensors, radars, and satellites. Data is dispersed and stored

over a distributed collection of machines. As soon as a

dataset (or a portion thereof) arrives, the dataset is

transformed to one or more storage unit(s): block(s). Data

blocks are dispersed using an indexing scheme applied on the

major dimensions such as geospatial coordinates and

temporal information accompanying the measurements.

A. Network Topology

Galileo‟s topology is organized as a zero-hop distributed

hash table. DHT‟s provide a decentralized, highly scalable

overlay network that allow for insertions and retrievals

similar to that of a hash table; e.g. put(key, value), and

get(key). The class of zero-hop DHT‟s, such as Apache

Cassandra [13] and Amazon Dynamo [14], provide enough

state at each node to allow for direct routing of requests to

their destination without the need for intermediate hops.

Galileo deviates from the standard DHT in that it employs

a hierarchical node partitioning scheme. This scheme

leverages characteristics of the data elements to map related

data on or near the same node. Each storage node within the

system is placed in a group. The size and quantity of groups

are a user-configurable parameter that can be adjusted to best

fit the data stored. The two-tiered partitioning structure,

where nodes are first placed in groups among similar nodes,

then hashed within that group, increases the efficiency of

retrieval operations by providing data locality for query

evaluations. The data locality also expands data interactions

beyond the put(key, value)/get(key) into more expressive

queries such as range-based, wild card, polygon, and

approximate queries.

B. Metadata

Instead of using notions of files and directories, the units

of encapsulation specified in user queries are the features that

describe the dataset. To narrow the search space and to

effectively evaluate queries, each node maintains two in-

memory metadata structures: a low-resolution feature graph

that encompasses the entire dataset and a high-resolution

metadata graph representative of the data stored within that

particular node. A typical query evaluation process is as

follows: a query is issued to any single node in the system

which, in turn, uses the low-resolution feature graph to

construct a set of candidate storage nodes possibly holding

data relevant to the specified query. The candidate nodes

then exhaustively evaluate the query at higher-resolutions to

retrieve any data blocks that match the specified query.

Matching blocks are streamed asynchronously to the issuing

client.

The high-resolution metadata graph follows a hierarchal,

tree-like structure where each level of the tree corresponds to

an indexed feature of the data and the leaves of the tree

contain the data access information needed for retrieval.

Traversing the graph from root to leaves will discover data

that has the properties aggregated along the path, whereas

traversing the graph from leaf to root will provide the entire

indexed feature information for the data block represented by

the leaf. This structure provides many benefits in terms of

efficiency of operations and interactivity with the results. By

grouping like paths or sub paths, duplicate metadata is

avoided and query evaluations following one path returns

many results. Once a query is evaluated, the metadata graph

can be traversed, reoriented, and/or partitioned to precisely

extract the quantity of results and their various attributes

without ever reading data from the disk.

Figure 1 depicts a simple metadata graph consisting of

three features: spatial location, humidity, and temperature. In

this example, all data points share the same spatial

characteristic of residing with the 9Q Geohash, discussed in

the next subsection. The second level here corresponds to the

humidity attribute of the data. As we traverse down the left –

most path to data block 1, we observe that data points within

that block: reside in 9Q Geohash, have 70.5% humidity, and

is 28.9 °C. From this we can tell that this data point is

describes a location that is moderately humid and hot.

Fig. 1. Example of a simple metadata graph. This is an example

metadata of a dataset using three features to index data blocks: Spatial

geohash code, humidity, and temperature. The data block 4 contains dataset

that has 71% humidity with a temperature of 32.1 °C for the geospatial area

9Q that is mostly southern California and a large portion of Nevada, USA.

Because the bottom level contains data block locations

that are fixed within the storage node, it is possible to have

multiple edges to the same leaf. This is observed in data

block 3 that is connected to two different temperatures.

C. Geohashing and Storage of Data Streams

Galileo supports streaming data that incrementally enters

the system from a variety of sources. These data items are

constantly evolving over time and can share a number of

common attributes. Therefore, simply applying a standard

hash function on the incoming data results in an

approximately even distribution of files across all the nodes

in the system, but does not account for similarity in the data

being stored. We employ the Geohash algorithm [15] as the

first tier hashing function to partition geospatially similar

data points to the same group. The Geohash algorithm

divides geographic regions into a hierarchical structure. A

Geohash is a string derived from a latitude and longitude

coordinate. Each Geohash string represents a bounding

spatial box. The length of the string corresponds to the

precision of the box; a longer string denotes a more precise,

or smaller, bounding box. For example, the latitude-

longitude coordinate N40.57, W105.08 is bounded by the

Geohash 9XJQBCE. Appending characters to the string

would make it refer to more precise geographical subsets of

the original string. Figure 2 [9] illustrates how regions are

divided into successively more precise bounding boxes. The

Geohash regions provide a natural mechanism to partition

geospatially similar data to the same group.

Inspecting the spatial dimensions present in incoming

data streams facilitates our controlled dispersion strategy by

creating logical groupings of data in the hash space, but also

increases the likelihood of storage imbalances across nodes

in the system [7]. Using a hierarchical approach allows a

balance to be struck; placing logically similar data items in

the same groups and then using a second hash function based

9Q

70.5% 71.0%

30.6°C 28.9°C 32.1°C 29.5°C

1 2 3 4

Spatial

Humidity

Temperature

Data blocks
and their
access
information

Fig. 2. An illustration of the recursive subdivision of a Geohash bounding box. By adding one base-32 character to the Geohash value, a spatial area is subdivided
into 32 sub-blocks. Each of the characters represents interleaving 5 bits that separate the latitude and longitude intervals.

on a feature of the data to place it on specific nodes within

the groups. While hierarchical node partitioning imposes a

less balanced load distribution, the range of the data

dispersion between the two-tiered partitioning and a flat

SHA-1 hash is only 1% of the dataset [7].

IV. DISTRIBUTED UPDATABLE CACHE

In an environment where data evolves at a fast rate,

challenges arise when up-to-date query results are frequently

needed. In many cases, clients must repeatedly reissue

queries, filter out new data from the old, and perform

redundant processing on the results. Caching is a known

solution to many similar problems; however, massive data

volumes introduce many complications to the simple caching

model.

 In general, query caching is performed when the user‟s

data do not change very often and it is particularly useful

when the server receives many identical queries that reflect

recent changes. Our design is also differentiated from the

existing updatable cache in terms of the underlying

topologies of the storage nodes. The distributed updatable

cache should perform query caching to cope with the nature

of the dispersed data over a large number of storage nodes.

In-memory management of these caches is also essential to

address the gap in the random access performance between

main memory and disks. This section will discuss the

architecture and algorithm used in the distributed updatable

cache to handle these challenges.

A. Cached Continuous Queries

When considering continuous queries over data streams

there are many existing techniques for evaluation such as

sliding windows, sampling, synopsis data structures, or batch

processing [6]. Each technique has usage scenarios for which

it performs well and for which it performs poorly. For

example, numerous live monitoring applications require

prompt, time-independent analysis of streaming data.

Because the entire history of the stream is not needed for the

analysis, sliding windows are attractive solutions for

approximate answers to continuous queries. Conversely, in

settings where the analysis performed is dependent on

historical data, sliding windows perform poorly. Galileo

Cached Continuous Queries (CCQ) strive for a holistic

evaluation and thus employ a combination of two techniques:

batch processing, where data aggregates over a short time

interval and is processed in groups, and data synopsis, where

a sketch, or synopsis, of the data is maintained and queried.

A CCQ encompasses the standard Galileo query with the

addition of two vital parameters: an expiration time and an

update interval. These two attributes express duration for

which the continuous evaluation should be performed and

the interval at which each processing cycle will be executed.

Once a CCQ is dispatched, the initial query is evaluated and

among the query‟s candidate nodes, an election phase,

discussed subsection E, is performed to select a node to

administer the CCQ. In addition to the initial evaluation, the

client receives the information for the node elected to

manage the CCQ.

B. Cached Continuous Query Coordinator

The storage node selected to maintain the CCQ spawns a

cached query coordinator that directs all operations with

cached queries on the node. As illustrated in Figure 3, a

cached query coordinator consists of four main components,

CCQ tracker, cache table, query processors, and election

processors. Upon receiving a new CCQ, the CCQ tracker

will schedule and initiate the CCQ‟s processing cycles

according to the specified update interval. The value of the

update interval determines the window of accuracy in the

results. The query results will be at most the update interval

time value out-of-date.

At the end of each cycle, the cached query coordinator is

responsible for aggregation, compression, and caching of the

results into the cache table. If a single cache grows too large,

the tracker triggers an election phase to choose a nearby node

that has available resources to take over the cache. An

election processor is spawned to execute the election phase

and update the tracker and cache tables with the results. Each

of these tasks is discussed in detail in the subsequent

sections.

C. Processing Cycles

The fundamental technique in our continuous query

evaluation lies in the batch processing cycle. A batch

processing sequence, initiated by the CCQ coordinator,

occurs for each CCQ at their respective intervals. The query

is reissued to the system and evaluated in a streamlined

fashion.

As a result of the redundant nature of continuous queries,

nodes involved with a CCQ can perform optimizations

during its reevaluations. Cached queries repeatedly explore

the same area of the metadata graph and therefore the nodes

evaluating them can omit large portions of unrelated graph

extents to improve performance. Each query candidate node,

obtained from the feature graph, returns its result to the CCQ

coordinator for compaction, also derived from the metadata

graph.

D. Leveraging the Metadata Graph

One of the goals of the distributed updatable cache is to

preserve the data interactivity that Galileo provides via the

metadata graph. While simply caching file block identifiers

and access information is compact and efficient, the end

result is an array of filenames which require direct data

accesses to extract any information. Instead, we leverage the

current metadata graph in two essential ways to maintain the

interaction.

First, the graph is utilized as a synopsis data structure for

all the data stored on a node. Since the CCQ coordinator

dispatches the cached query only to the candidate nodes, we

are able to narrow down the search space immediately. The

dispatching to the multiple candidate nodes is performed in

parallel. By lowering the dimensionality of the data to only

the indexed features, requests can be calculated in near-real

time.

The metadata graph also provides a canonical naming

scheme for paths that can be utilized as a method of data

compaction. Since every path from root to leaf is unique, a

discrete path name can be created for each file block. While

traversing from the root to a leaf, vertices at each level

concatenate its payload to the initially blank name on the

way down. The end result is a distinct, static label that

represents all the metadata associated with the file block.

This label can be reconstructed into a metadata path and, in

turn, a metadata graph as depicted in Figure 4. This

technique preserves the tree like aspects of the query results

that allow client interaction. These compact path labels are

cached for each query result.

E. Metadata Path Label Caches

For each re-query result the CCQ coordinator receives, a

set of path labels is constructed and cached locally. Local

caches introduce new complications such as only caching

new data, minimizing cache sizes, and defining maximum

cache size thresholds.

1) Caching Recent Data

To ensure only data that has arrived since the previous

processing cycle is stored, the CCQ coordinator uses a

simple timestamping technique. Every data block that enters

the system has an associated timestamp that is updated

anytime a block is modified. The CCQ coordinator maintains

a time stamp for each tracked CCQ that indicates the time

since the last client retrieval. A filter is applied during the

query evaluation that drops any data blocks whose timestamp

is before the coordinator‟s timestamp.

2) Local Cache Compression

While each label is compact, cached queries with large

outcomes can potentially thrash the main-memory of the

caching node. To cope with this, CCQ‟s provide an optional

parameter that introduces compression into the caching

process. When enabled, each label cache is streamed through

a LZW compression [16] algorithm to reduce the volume of

the cache. Due the redundant nature of the cache label

content, the high-performance LZW cache achieves excellent

compression as shown by Table I. Compression comes with

a temporal cost and is not optimal in environments requiring

concise response times. Thus, we‟ve made this an optional

feature to best fit end user‟s needs.

Feature Graph Persistent Store Metadata Graph

CCQ
Coordinator

CCQ Coordinator

CCQ Tracker

Election
Processor

Cache Table

Query Processors

Galileo Node

Fig. 3. Galileo‟s continuous query architecture. Each of the Galileo nodes manages a Cached Continuous
Query Coordinator. This Coordinator comprises the following: Tracker, Cache table, query processors and

Election Processor.

Fig. 4. The compaction and expansion of a metadata graph path. The data

compaction process provides a flattened representation of the metadata to

maintain and track the dataset for continuous query effectively. Since it
preserves the semantics of the metadata, it is easy to merge the sub-graph

with the original query results when necessary.

TABLE I.
COMPARISON OF QUERY RESULT SIZES

Number of
Results

Original size
(kilobytes)

Compacted Size
(kilobytes)

Compressed Size
(kilobytes)

1,000 102.383 27.483 7.624

100,000 10,187.88 2,743.549 720.745

3) Dynamic Cache Size Thresholds

Even in our best efforts in reducing the volume of query

output, large outcomes will eventually exceed a system‟s

memory boundaries. It is not feasible to expect a single

storage node‟s main memory to be sufficiently large. To

determine when a cache should be distributed, each cache

has a dynamic threshold based on a variety of usage statistics

such as available memory, CPU usage, node popularity, and

presence of other CCQs. If this threshold is exceeded, the

coordinator will initiate an election phase to select a new

node to take over the future cache entries.

As the state of the nodes progress this threshold

dynamically adjusts to maintain a balanced workload

throughout the cluster. For example, the introduction of a

second CCQ will decrease the threshold of the existing one;

forcing an election phase to redistribute the overflowed cache

and maintain equilibrium.

This approach has a ceiling in terms of memory, as

ultimately we are bounded by the total memory within the

cluster. To reach it, however, takes a bit of work. If a cached

query, for example, yields one billion results, the distributed

updatable cache system needs 7.3 gigabytes of system wide

memory to cope with the continuous query without ever

going to disk. Future work, discussed in the final section,

includes ways to push this boundary even higher.

F. Election Algorithm

The final piece to our solution is the election phase. Like

the processing cycle, the election phase also leverages

Galileo‟s architecture to optimize performance. Once

initiated, the node will broadcast an election poll to all the

nodes within its hierarchical grouping. If all of the responses

fail to meet the needs of the CCQ, the poll is extended

further to another group in the Galileo cluster. Broadcasting a

poll to the entire cluster simultaneously, would result in a

bottleneck of communication when cluster sizes grow large.

This approach of polling for a localized optimum provides a

scalable election.

As a response to an election poll, a storage node will send

the same usage statistics used in the cache threshold

calculation (available memory, CPU usage, node popularity,

CCQ count) back to the initial coordinator. Based on the

incoming statistics and their respective round trip times, each

response is ranked. The top rank is selected to be responsible

for the future portions of the CCQ cache.

The coordinator tracks the newly elected node in its

respective CCQ table entry. Each additional elected storage

node will update the original coordinator about their

affiliation with the query. As a CCQ cache propagates

through the storage nodes exactly one coordinator, the most

Fig. 5. A high-level overview of the distributed updatable cache and cached
continuous query progession. First targeted nodes for the election phase are

the nodes in the same group. If all of the nodes in the group are overloaded,

the election process will be encompass other groups based on the workloads
and the network latency.

9Q

70.5 71.0

30.6 28.9 32.1 29.5

A B C D

9Q

30.6

C

71.0

“9Q|71.0|30.6|C”

9Q
71.0

30.6
C

Client

Galileo Cluster Group
E

Group
F

Group
A

Group
B

Group
C Group

D

Canonical
Naming
Scheme

9X

10/01 9X10/01

xzy Label: 9X10/01xzy

9X

Cached
Continuous

Query

Election
Algorithm on

cache
overflow

CCQ Cache

recently elected, will initiate processing cycles.

Figure 5 shows a high level view of the distributed

updateable cache and the CCQ processing flow. An end user

defines and submits a CCQ to any of the storage nodes in the

Galileo cluster. Upon receiving the query, the storage node

evaluates the query periodically and compacts the results

using the metadata graph canonical naming scheme into path

labels. The compacted path labels are cached locally in a

dynamically sized store. If the cache overflows, an election

phase is conducted to choose the locally optimal node to

maintain newest data in the cache.

G. Client Interaction

Upon direct request, anomalous event, or any other

trigger, the CCQ coordinator will request all the elected

nodes to send their caches. Upon arrival, the coordinator

aggregates each cache to reconstruct a single metadata graph.

This metadata graph is identical to that of a standard query

result, and thus, the entire process is transparent to the client.

Retrieval for cached continuous queries is more responsive

than a standard query because no evaluations are needed. The

client receives immediate, up-to-date data that can be

combined with data previously accumulated to conduct their

studies. After client retrieval, all caches are cleared and the

process is repeated until the CCQ expires. The caches are

purged from the memory once the CCQ expires.

As the client receives the metadata graph response from

any query, the graph is converted to the resource description

framework [17] (RDF) data model. Data in RDF is

represented by subject-predicate-object triples, where a

subjects and objects refer to the resources and predicates

describe the relationships between them. The RDF model can

be conceptualized as a directed graph with named edges.

Vertices in the graph represent subjects and objects, and

named edges represent the predicates. For example, if an

edge links vertex P to vertex Q, P has the property Q.

Galileo‟s metadata graph lends itself nicely to this RDF

directed graph model. By directing edges in the metadata

graph downwards towards the leaves and assigning predicate

of parent-of completely describes the data. This

conversion schema allows for the utilization of the graph

query language SPARQL to create customized views of the

metadata graph to explore the data and create sub-queries.

SPARQL [18] is a rich querying language for RDF.

Conjunctions, disjunction, triple patterns, and joins are

among many of the types of query supported by SPARQL.

By converting the metadata graph to RDF, SPARQL queries

can be performed to obtain any subset of vertices or to

specify a subgraph upon which to do further preprocessing

and analysis.

H. Fault Tolerance

Distributed storage systems are often comprised of large

numbers of commodity machines to reduce the hardware

costs. Consequently, node and disk failures occur frequently

and cannot be brushed under the rug as an anomalous event.

One common technique for coping with these failures

involves assigning replica data to multiple other nodes within

the cluster and if a failure occurs, route the request to one of

the replicas. The downside of this technique is the storage

requirements involved with replicating this information

across one or more nodes. In an environment constrained by

memory, such as ours, this solution does not scale.

Our approach to handling failures is derived from the fact

that all data streamed into the system is stored and can be

accessed at any time. Each time a processing cycle

distributes its query for evaluation, the storage nodes

receiving the CCQ keep track of three fault tolerance data

items: (1) the location of the coordinator for the CCQ, (2) the

CCQ itself, and (3) the timestamp used as data recency filter,

previously described in subsection E1. When a failure is

detected, affected coordinators can be determined by

checking the tracked coordinator location data at each node.

If a coordinator has failed, a new coordinator is elected via a

standard election phase. The new coordinator reestablishes

the CCQ with the parameters obtained from the stored fault

tolerance data. The stored timestamp ensures the consistency

of the new label cache with that of the failed coordinator.

The new coordinator informs the client that it is the new

access point for the CCQ.

V. SAMPLING QUERY RESULTS

Many applications, such as data visualization, require the

investigator to sample the data after its acquisition from the

server; however, downloading the entire query output just to

filter out a large portion is inefficient. To cope with this

limitation, as part of this effort we incorporate a framework

by which clients can provide a user defined sampling

function (UDSF) to acquire a sample of the data desired

without downloading it first.

Because sampling is often a domain specific function, we

provide a mechanism to devise a personalized sampling

function to be executed on the cluster. An interface defines

the structure for the UDSF to be implemented to ensure

compatibility. The client then separately implements,

compiles, and compresses the UDSF into a Java ARchive

(JAR) file to be sent with the query to the server. After a

query is evaluated, rather than dispatching the entire dataset

over the network to the client, the JAR is written locally to

the server, loaded dynamically, and applied to the evaluated

query.

In the cached continuous query framework, the UDSF is

loaded and evaluated as normal during the processing cycle.

Data blocks are filtered out first by timestamp, to ensure a

fair sample, and then by the dynamically loaded UDSF. The

sampled results are returned to the coordinator and the rest of

the CCQ process continues as normal.

VI. PERFORMANCE EVALUATION

To benchmark the effectiveness of our continuous query

framework, we sourced real-world data from the North

American Mesoscale Forecast System (NAM) [19], which is

maintained by the National Oceanic and Atmospheric

Administration (NOAA). The NAM is run four times daily,

Fig. 6. Comparison of retrieval performance of queries of varying sizes

between standard and continuous cached queries.

and we sampled data recorded from 2009-2012 using our

NetCDF input plugin to generate a dataset containing one

billion (1,000,000,000) Galileo blocks, each of which is 8

kilobytes. The data attributes we indexed and queried against

included the spatial location for the sample, temporal range

during which the data was recorded, percent maximum

relative humidity, surface temperature (Kelvin), wind speed

(meters per second), and snow depth (meters).

We composed a series of test scenarios to measure three

main aspects of our design: speed, memory consumption,

and continuous retrieval throughput. Each experiment was

conducted 100 times in our heterogeneous 75-node cluster

composed of 47 HP DL160 servers (Xeon E5620, 12 GB

RAM, 15000 RPM Disk) and 28 Sun Microsystems SunFire

X4100 servers (Opteron 254, 8 GB RAM, 10000 RPM

Disk).

To ensure the continuous cached queries performed as

expected, we ran a series of retrieval throughput benchmarks

in comparison with Galileo‟s standard query evaluation

method. Figure 6 compares the retrieval times of the two

querying techniques over a number of file block results. By

altering the query parameters, we adjusted the number of

returned file blocks to range from 0 to 10,000. These results

demonstrate that the time costs of compression, caching, and

reassembly are less than that of distributing queries to nodes

in parallel, then aggregating results; as the standard method

does.

While promising, the previous benchmark exemplified

that caching can indeed make things faster, which is to be

expected. In this context, the challenge is to attain the

speedups caching can provide while maintaining a small

memory footprint. To examine the memory efficiency of our

continuous query framework, we reduced the volume of the

dataset 1,000,000 file blocks to increase the severity of the

memory increases we will incur. This benchmark involved

issuing 10 distinct CCQ‟s yielding 100,000 results each;

doubling the number of represented in-memory file blocks.

To measure the memory discrepancy, we populated the

cluster with the one million file blocks and measured the

memory usage without the presence of any cached queries.

Subsequently, all 10 CCQ‟s were dispatched and the memory

usage was measured once again, after the CCQ‟s were able

to equilibrate. Figure 7 represents the percentage of change

in memory usage before and after the CCQ‟s were issued on

a node by node basis. If no memory changes were realized,

the chart would appear as two identical rectangles meeting at

the 0% line. Each “after” bar that drops below the 0% mark

indicates a memory increase on that particular node caused

by the distributed updatable cache. The magnitude of this

increase is denoted by how far below it drops. It is clear the

memory requirements did not double despite doubling the

number of represented in-memory file blocks. In fact, only

an 11.71% increase was realized after the introduction of the

10 cached continuous queries.

Figure 7 displays the success of the election algorithm‟s

ability to distribute the caches. Though the light bar troughs

may seem random in location and length, recall that Galileo

utilizes a two-tiered hashing scheme to distribute data

initially. This means that from the start, the load distribution

in memory is not even amongst the nodes. For instance, in

Figure 7, the largest memory increase, the third large

difference from the left, occurred on node 17; that had the

smallest allocation in the initial distribution. The addition of

one million represented file blocks increased the standard

deviation of the distribution by .8602 megabytes.

Our final benchmark targets the continuous retrieval process.

We deployed a CCQ into an empty cluster, with the varying

update intervals and streamed in blocks that match the query.

At three second intervals, continuous query update retrieval

is requested, the time and number of file blocks was

recorded. A summary of the results can be found in Table II.

Our batch processing technique allows for consistently fast

retrieval times in the face of large query output volumes.

Longer update interval times produce a large number of file

blocks retrieved. This is because there is more time for

incoming data blocks to accumulate before a processing

cycle is initiated.

Fig. 7. Difference in memory usage after deploying 10 continuous cached

queries having 100,000 results each over a dataset with 1,000,000 file

blocks.

0

100

200

300

400

500

600

700

800

900

1000

0 2,000 4,000 6,000 8,000 10,000 12,000

R
et

ri
ev

al
 T

im
e

(m
s)

Number of File Blocks

Comparison of Retrieval Throughput

With CCQ

Without CQQ

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
en

ta
ge

 o
f

M
em

o
ry

 D
if

fe
rn

ce

Nodes

Memory Distribution

After

Before

50%

40%

30%

20%

10%

0%

10%

20%

30%

40%

50%

TABLE II.
BENCHMARKS FOR VARIOUS CACHED CONTINUOUS QUERY SIZES

Number of
Blocks

Streamed

Average
Retrieval

Time (ms)

Average Number of Blocks per
Update Interval

1 s 5 s 10 s

1,000 100.66 330 384 595

100,000 109.05 423 515 615

1,000,000 177.85 411 506 522

Because only updates since the most recent retrieval are

returned each time, the volume of the data transfers are

minimized which greatly improves the performance versus

downloading all of the redundant data.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

Cost-effective access to voluminous multidimensional

datasets is a challenging problem when the data is evolving

quickly. Keeping things up-to-date can be expensive and

may involve the repeated data queries, excessive data

movements, and redundant data preprocessing. Our approach

to solving this problem provides a scalable caching

mechanism to evaluate continuous queries over data stored in

Galileo, our distributed storage system. A cached continuous

query defines our batch query processing parameters. The

cache continuous query coordinator at each node is

responsible for initiating the query at the defined intervals.

Upon receiving results from other storage nodes, the

coordinator aggregates, compresses, and caches the most

recent results into the cache table.

We benchmarked several aspects of our continuous query

system such as the efficiency of our cache and compression

mechanisms, the distribution of the election phase, and the

throughput of our distributed cached continuous queries. Our

benchmarks show the efficacy of our approach.

B. Future Work

Our vision of holistic continuous query evaluation has

many ideas for improvement and expansion. With a memory

limit in mind, the scheduled cached continuous query

processing cycle displays a timely, repetitive pattern that we

can leverage. By writing caches to disk, knowing they won‟t

be needed until the next interval, we free memory for other

queries or processing. As an interval for a cache on disk

approaches, we can prefetch the contents before they are

needed. This scheme could potentially expand the memory

limit our approach imposes, particularly in environments

with cached continuous queries possessing long update

intervals.

A far more flexible continuous querying scheme could be

achieved by broadening our approach to incorporate some of

the more common data stream processing techniques such as

a sliding window over the incoming data. Such an

implementation gives clients the choice of tradeoffs involved

in the various continuous query techniques.

ACKNOWLEDGEMENTS

This research has been supported by funding from the US

Department of Homeland Security‟s Long Range program

(HSHQDC-13-C-B0018).

REFERENCES

[1] Chen, Y., Lwin, K., and Williams, S.: „Continuous Query Processing
and Dissemination‟, in Editor (Ed.)^(Eds.): „Book Continuous Query

Processing and Dissemination‟ (Citeseer, edn.), pp.

[2] Jianjun Chen, D.J.D., Feng Tian, Yuan Wang: „NiagaraCQ: a scalable
continuous query system for Internet databases‟. Proc. ACM SIGMOD

international conference on Management of data, New York, NY, USA

2000 pp. Pages
[3] Amazon web services. (2013) “Amazon kinesis Developer Guide”

http://awsdocs.s3.amazonaws.com/kinesis/latest/kinesis-dg.pdf

[4] Daniel J. Abadi, Y.A., Magdalena Balazinska, Mitch Cherniack,
Jeong-hyon Hwang, Wolfgang Lindner, Anurag S. Maskey, Er Rasin,

Esther Ryvkina, Nesime Tatbul, Ying Xing, Stan Zdonik: „The design

of the borealis stream processing engine‟. Proc. Conference on
Innovative Data Systems Research, Asilomar, CA, USA 2005 pp.

Pages

[5] Developers, G.: „Mobile Backend Starter‟, 2013
[6] Brian Babcock, S.B., Mayur Datar, Rajeev Motwani, Jennifer Widom:

„Models and issues in data stream systems‟. Proc. ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems 2002

[7] Matthew Malensek, S.L.P., Shrideep Pallickara: „Expressive Query

Support for Multidimensional Data in Distributed Hash Tables‟. Proc.
IEEE/ACM Conference on Utility and Cloud Computing, Chicago,

USA 2012 pp. Pages

[8] Matthew Malensek, S.L.P., Shrideep Pallickara: „Galileo: A
Framework for Distrubuted Storage of High-Throughput Data

Streams‟. Proc. IEEE/ACM Conference on Utility and Cloud

Computing, Melbourne, Australia 2011 pp. Pages
[9] Matthew Malensek, S.P., Shrideep Pallickara: „Exploiting Geospatial

and Chronological Characteristics in Data Streams to Enable Efficient

Storage and Retrievals‟, Future Generation Computer Systems, 2013,

29, (4), pp. 1049-1061

[10] Sangmi Pallickara, M.M., Shrideep Pallickara: „Enabling Access to

Time-Series, Geospatial Data for On Demand Visualization‟. Proc.
IEEE Symposium on Large-Scale Data Analysis and Visualization,

Providence, Rhode Island 2011 pp. Pages

[11] Suhee Kim, S.H.S., John A. Stankovic: „Performance Evaluation on a
Real-Time Database‟. Proc. IEEE Real-Time Technology and

Applications Symposium2002 pp. Pages

[12] John A. Stankovic, S.H.S., Jörg Liebeherr: „BeeHive: Global
Multimedia Database Support for Dependable Real-Time

Applications‟, University of Virginia Dept. of Computer Science Tech

Report, 1998
[13] Avinash Lakshman, P.M.: „Cassandra: a decentralized structured

storage system‟, ACM SIGOPS Operating Systems Review, 2007, 44,

(2), pp. 35-40
[14] Giuseppe DeCandia, D.H., Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,

Peter Vosshall, Werner Vogels: „Dynamo: amazon's highly available
key-value store‟, in Editor (Ed.)^(Eds.): „Book Dynamo: amazon's

highly available key-value store‟ (ACM, 2007, edn.), pp. 205-220

[15] Wikipedia Contributors. (2013) Geohash. [Online]. Available:
http://en.wikipedia.org/wiki/Geohash

[16] Welch, T.A.: „A Technique for High-Performance Data Compression‟,

Computer, 1984, 17, (6), pp. 8-19
[17] W3C (1999). "Resource Description Framework (RDF) Model and

Syntax Specification." from http://www.w3.org/TR/PR-rdf-syntax/

[18] W3C (2013). "SPARQL 1.1 Overview."
http://www.w3.org/TR/sparql11-

overview/http://www.w3.org/TR/sparql11-overview/

[19] NOAA. (2013) The NAM. [Online]. Available:
http://www.emc.ncep.noaa.gov/index.php?branch=NAM

