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76 Chapter 2 Instructions: Language of the Computer

 2.1 Introduction

To command a computer’s hardware, you must speak its language. The words 
of a computer’s language are called instructions, and its vocabulary is called an 
instruction set. In this chapter, you will see the instruction set of a real computer, 
both in the form written by people and in the form read by the computer. We 
introduce instructions in a top-down fashion. Starting from a notation that looks 
like a restricted programming language, we refi ne it step-by-step until you see 
the real language of a real computer. Chapter 3 continues our downward descent, 
unveiling the hardware for arithmetic and the representation of fl oating-point 
numbers.

You might think that the languages of computers would be as diverse as those 
of people, but in reality computer languages are quite similar, more like regional 
dialects than like independent languages. Hence, once you learn one, it is easy to 
pick up others. This similarity occurs because all computers are constructed from 
hardware technologies based on similar underlying principles and because there 
are a few basic operations that all computers must provide. Moreover, computer 
designers have a common goal: to fi nd a language that makes it easy to build the 
hardware and the compiler while maximizing performance and minimizing cost 
and power. This goal is time honored; the following quote was written before you 
could buy a computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction 
sets] that are in abstract adequate to control and cause the execution of any 
se quence of operations . . . . The really decisive considerations from the present 
point of view, in selecting an [instruction set], are more of a practical nature: 
simplicity of the equipment demanded by the [instruction set], and the clarity of 
its application to the actually important problems together with the speed of its 
handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for today’s 
computers as it was for those of the 1950s. The goal of this chapter is to teach 
an instruction set that follows this advice, showing both how it is represented 
in hardware and the relationship between high-level programming languages 
and this more primitive one. Our examples are in the C programming language; 

 Section 2.15 on the CD shows how these would change for an object-oriented 
language like Java.

instruction set The 
vocabu lary of commands 
understood by a given 
architecture.

instruction set The 
vocabu lary of commands 
understood by a given 
architecture.
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By learning how to represent instructions, you will also discover the  secret of 
computing: the stored-program concept. Moreover, you will exercise your “for eign 
language” skills by writing programs in the language of the computer and running 
them on the simulator that comes with this book. You will also see the impact of 
programming languages and compiler optimization on performance. We conclude 
with a look at the historical evolution of instruction sets and an overview of other 
computer dialects.

The chosen instruction set comes from MIPS Technologies, which is an elegant 
example of the instruction sets designed since the 1980s. Later, we will take a quick 
look at two other popular instruction sets. ARM is quite similar to MIPS, and more 
than three bil lion ARM processors were shipped in embedded devices in 2008. The 
other exam ple, the Intel x86, is inside almost all of the 330 million PCs made in 
2008.

We reveal the MIPS instruction set a piece at a time, giving the rationale along 
with the computer structures. This top-down, step-by-step tutorial weaves the 
components with their explanations, making the computer’s language more palat-
able. Figure 2.1 gives a sneak preview of the instruction set covered in this chapter.

 2.2 Operations of the Computer Hardware

Every computer must be able to perform arithmetic. The MIPS assembly language 
notation

add a, b, c

instructs a computer to add the two variables b and c and to put their sum in a.
This notation is rigid in that each MIPS arithmetic instruction performs only 

one operation and must always have exactly three variables. For example, suppose 
we want to place the sum of four variables b, c, d, and e into variable a. (In this 
section we are being deliberately vague about what a “variable” is; in the next 
section we’ll explain in detail.)

The following sequence of instructions adds the four variables:

add a, b, c # The sum of b and c is placed in a.
add a, a, d # The sum of b, c, and d is now in a.
add a, a, e # The sum of b, c, d, and e is now in a.

Thus, it takes three instructions to sum the four variables.
The words to the right of the sharp symbol (#) on each line above are comments 

for the human reader, and the computer ignores them. Note that unlike other pro-
gramming languages, each line of this language can contain at most one instruction. 
Another difference from C is that comments always terminate at the end of a line.

stored-program 
concept The idea that 
instructions and data of 
many types can be stored 
in memory as numbers, 
leading to the stored-
program computer.

stored-program 
concept The idea that 
instructions and data of 
many types can be stored 
in memory as numbers, 
leading to the stored-
program computer.

There must certainly 
be instructions 
for performing 
the fundamental 
arithmetic operations.

Burks, Goldstine, and 
von Neumann, 1947

There must certainly 
be instructions 
for performing 
the fundamental 
arithmetic operations.

Burks, Goldstine, and 
von Neumann, 1947
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78 Chapter 2 Instructions: Language of the Computer

MIPS operands

Name Example Comments

32 registers
$s0–$s7, $t0–$t9, $zero, 
$a0–$a3, $v0–$v1, $gp, $fp, 
$sp, $ra, $at

Fast locations for data. In MIPS, data must be in registers to perform arithmetic, 
register $zero always equals 0, and register $at is reserved by the assembler to 
handle large constants.

230 memory 
words

Memory[0], Memory[4], . . . , 
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so 
sequential word addresses differ by 4. Memory holds data structures, arrays, and 
spilled registers. 

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add  $s1,$s2,$s3 $s1 = $s2 + $s3 Three register operands
subtract sub  $s1,$s2,$s3 $s1 = $s2 – $s3 Three register operands
add immediate addi $s1,$s2,20 $s1 = $s2 + 20 Used to add constants

Data 
transfer

load word lw  $s1,20($s2) $s1 = Memory[$s2 + 20] Word from memory to register
store word sw  $s1,20($s2) Memory[$s2 + 20] = $s1 Word from register to memory
load half lh  $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register

load half unsigned lhu  $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register

store half sh  $s1,20($s2) Memory[$s2 + 20] = $s1 Halfword register to memory

load byte lb  $s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register

load byte unsigned lbu  $s1,20($s2) $s1 = Memory[$s2 + 20] Byte from memory to register

store byte sb  $s1,20($s2) Memory[$s2 + 20] = $s1 Byte from register to memory

load linked word ll  $s1,20($s2) $s1 = Memory[$s2 + 20] Load word as 1st half of atomic swap 

store condition. word sc  $s1,20($s2) Memory[$s2+20]=$s1;$s1=0 or 1 Store word as 2nd half of atomic swap 

load upper immed. lui  $s1,20 $s1 = 20 * 216 Loads constant in upper 16 bits

Logical

and and   $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

or or    $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

nor nor   $s1,$s2,$s3 $s1 = ~ ($s2 | $s3) Three reg. operands; bit-by-bit NOR

and immediate andi  $s1,$s2,20 $s1 = $s2 & 20 Bit-by-bit AND reg with constant

or immediate ori   $s1,$s2,20 $s1 = $s2 | 20 Bit-by-bit OR reg with constant

shift left logical sll   $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl   $s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Conditional 
branch

branch on equal beq  $s1,$s2,25 if ($s1 == $s2) go to 
PC + 4 + 100

Equal test; PC-relative branch

branch on not equal bne  $s1,$s2,25 if ($s1!=  $s2) go to 
PC + 4 + 100

Not equal test; PC-relative 

set on less than slt  $s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1; 
else $s1 = 0

Compare less than; for beq, bne

set on less than 
unsigned

sltu  $s1,$s2,$s3 if ($s2 < $s3)  $s1 = 1; 
else $s1 = 0

Compare less than unsigned

set less than 
immediate 

slti $s1,$s2,20 if ($s2 < 20) $s1 = 1; 
else $s1 = 0

Compare less than constant

set less than 
immediate unsigned

sltiu $s1,$s2,20 if ($s2 < 20) $s1 = 1; 
else $s1 = 0

Compare less than constant 
unsigned

Unconditional 

jump

jump j    2500 go to 10000 Jump to target address
jump register jr   $ra go to $ra For switch, procedure return
jump and link jal  2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 2.1 MIPS assembly language revealed in this chapter. This information is also found in Column 1 of the MIPS Reference 
Data Card at the front of this book. 
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The natural number of operands for an operation like addition is three: the 
two numbers being added together and a place to put the sum. Requiring every 
instruction to have exactly three operands, no more and no less, conforms to the 
philosophy of keeping the hardware simple: hardware for a variable number of 
operands is more complicated than hardware for a fi xed number. This situation 
illustrates the fi rst of four underlying principles of hardware  design:

Design Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of pro grams 
written in higher-level programming languages to programs in this more primitive 
notation.

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the fi ve variables a, b, c, d, and e. Since 
Java evolved from C, this example and the next few work for either high-level 
programming language:

a = b + c;
d = a – e;

The translation from C to MIPS assembly language instructions is performed 
by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result 
in one destination operand. Hence, the two simple statements above compile 
directly into these two MIPS assembly language instructions:

add a, b, c
sub d, a, e

Compiling a Complex C Assignment into MIPS

A somewhat complex statement contains the fi ve variables f, g, h, i, and j:

f = (g + h) – (i + j);

What might a C compiler produce?

EXAMPLEEXAMPLE

ANSWERANSWER

EXAMPLEEXAMPLE

 2.2 Operations of the Computer Hardware 79
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80 Chapter 2 Instructions: Language of the Computer

The compiler must break this statement into several assembly instructions, 
since only one operation is performed per MIPS instruction. The fi rst MIPS 
instruction calculates the sum of g and h. We must place the result some where, 
so the compiler creates a temporary variable, called t0:

add t0,g,h # temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of i and 
j before we can subtract. Thus, the second instruction places the sum of i and 
j in another temporary variable created by the compiler, called t1:

add t1,i,j  # temporary variable t1 contains i + j

Finally, the subtract instruction subtracts the second sum from the fi rst and 
places the difference in the variable f, completing the compiled code:

sub f,t0,t1 # f gets t0 – t1, which is (g + h) – (i + j)

For a given function, which programming language likely takes the most lines of 
code? Put the three representations below in order.

1. Java

2. C

3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a 
soft ware interpreter. The instruction set of this interpreter is called Java bytecodes (see 

 Section 2.15 on the CD), which is quite different from the MIPS instruction set. To 
get performance close to the equivalent C program, Java systems today typically compile 
Java bytecodes into the native instruction sets like MIPS. Because this compilation is 
normally done much later than for C programs, such Java compilers are often called Just 
In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers 
in the start-up process, and Section 2.13 shows the performance consequences of 
compiling versus interpreting Java programs.

 2.3 Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions 
are restricted; they must be from a limited number of special locations built directly 
in hardware called registers. Registers are primitives used in hardware design that 

ANSWERANSWER

Check 
Yourself

Check 
Yourself
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are also visible to the programmer when the computer is completed, so you can 
think of registers as the bricks of computer construction. The size of a register in 
the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are 
given the name word in the MIPS architecture.

One major difference between the variables of a programming language and 
registers is the limited number of registers, typically 32 on current computers, 
like MIPS. (See Section 2.20 on the CD for the history of the number of reg-
isters.) Thus, continu ing in our top-down, stepwise evolution of the symbolic 
 representation of the MIPS language, in this section we have added the restriction 
that the three oper ands of MIPS arithmetic instructions must each be chosen from 
one of the 32 32-bit registers.

The reason for the limit of 32 registers may be found in the second of our four 
underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because 
it takes electronic signals longer when they must travel farther. 

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be 
faster than 32. Yet, the truth behind such observations causes computer designers 
to take them seriously. In this case, the designer must balance the craving of pro-
grams for more registers with the designer’s desire to keep the clock cycle fast. 
Another reason for not using more than 32 is the number of bits it would take in 
the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction; 
as we shall see in this chapter, effective use of registers is critical to program 
perfor mance. 

Although we could simply write instructions using numbers for registers, from 
0 to 31, the MIPS convention is to use two-character names following a dollar sign 
to represent a register. Section 2.8 will explain the reasons behind these names. For 
now, we will use $s0, $s1, . . .  for registers that correspond to variables in C and 
Java programs and $t0, $t1, . . .  for temporary registers needed to compile the 
program into MIPS instructions. 

Compiling a C Assignment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for 
instance, the assignment statement from our earlier example:

f = (g + h) – (i + j);

The variables f, g, h, i, and j are assigned to the registers $s0, $s1, $s2, $s3, 
and $s4, respectively. What is the compiled MIPS code?

word The natural unit 
of access in a computer, 
usually a group of 32 bits; 
corresponds to the size 
of a register in the MIPS 
architecture.

word The natural unit 
of access in a computer, 
usually a group of 32 bits; 
corresponds to the size 
of a register in the MIPS 
architecture.

EXAMPLEEXAMPLE
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82 Chapter 2 Instructions: Language of the Computer

The compiled program is very similar to the prior example, except we replace 
the variables with the register names mentioned above plus two temporary 
registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h
add $t1,$s3,$s4 # register $t1 contains i + j
sub $s0,$t0,$t1 # f gets $t0 – $t1, which is (g + h)–(i + j)

Memory Operands

Programming languages have simple variables that contain single data elements, as 
in these examples, but they also have more complex data structures—arrays and 
structures. These complex data structures can contain many more data  elements 
than there are registers in a computer. How can a computer represent and access 
such large structures?

Recall the fi ve components of a computer introduced in Chapter 1 and repeated 
on page 75. The processor can keep only a small amount of data in regis ters, but 
computer memory contains billions of data elements. Hence, data struc tures 
(arrays and structures) are kept in memory. 

As explained above, arithmetic operations occur only on registers in MIPS 
instructions; thus, MIPS must include instructions that transfer data between 
memory and registers. Such instructions are called data transfer instructions. 
To access a word in memory, the instruction must supply the memory address. 
Memory is just a large, single-dimensional array, with the address acting as the 
index to that array, starting at 0. For example, in Figure 2.2, the address of the third 
data element is 2, and the value of Memory[2] is 10.

ANSWERANSWER

data transfer instruction 
A command that moves 
data between memory 
and registers.

address A value used to 
delin eate the location of 
a  specifi c data element 
within a memory array.

data transfer instruction 
A command that moves 
data between memory 
and registers.

address A value used to 
delin eate the location of 
a  specifi c data element 
within a memory array.

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these ele ments 
were words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word 
representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses.

Processor Memory

Address Data

1

101

10

100

0

1

2

3
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The data transfer instruction that copies data from memory to a register is 
traditionally called load. The format of the load instruction is the name of the 
opera tion followed by the register to be loaded, then a constant and register used 
to access memory. The sum of the constant portion of the instruction and the con-
tents of the second register forms the memory address. The  actual MIPS name for 
this instruction is lw, standing for load word. 

Compiling an Assignment When an Operand Is in Memory

Let’s assume that A is an array of 100 words and that the compiler has asso-
ciated the variables g and h with the registers $s1 and $s2 as before. Let’s 
also assume that the starting address, or base address, of the array is in $s3. 
 Compile this C assignment statement:

g = h + A[8];

Although there is a single operation in this assignment statement, one of 
the operands is in memory, so we must fi rst transfer A[8] to a register. The 
address of this array element is the sum of the base of the array A, found in 
reg ister $s3, plus the number to select element 8. The data should be placed 
in a temporary register for use in the next instruction. Based on  Figure 2.2, the 
fi rst compiled instruction is

lw $t0,8($s3) # Temporary reg $t0 gets A[8]

(On the next page we’ll make a slight adjustment to this instruction, but we’ll 
use this simplifi ed version for now.) The following instruction can operate on 
the value in $t0 (which equals A[8]) since it is in a register. The instruction 
must add h (contained in $s2) to A[8] ($t0) and put the sum in the register 
corresponding to g (associated with $s1):

add $s1,$s2,$t0 # g = h + A[8]

The constant in a data transfer instruction (8) is called the offset, and the reg-
ister added to form the address ($s3) is called the base register.

EXAMPLEEXAMPLE

ANSWERANSWER
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84 Chapter 2 Instructions: Language of the Computer

In addition to associating variables with registers, the compiler allocates data 
structures like arrays and structures to locations in memory. The compiler can then 
place the proper starting address into the data transfer instructions. 

Since 8-bit bytes are useful in many programs, most architectures address indi-
vidual bytes. Therefore, the address of a word matches the address of one of the 
4 bytes within the word, and addresses of sequential words differ by 4. For example, 
 Figure 2.3 shows the actual MIPS addresses for the words in Figure 2.2; the byte 
address of the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. This require-
ment is called an alignment restriction, and many architectures have it. (Chapter 4 
suggests why alignment leads to faster data transfers.)

Computers divide into those that use the address of the leftmost or “big end” 
byte as the word address versus those that use the rightmost or “little end” byte. 
MIPS is in the big-endian camp. (Appendix B, shows the two options to number 
bytes in a word.) 

Byte addressing also affects the array index. To get the proper byte address in 
the code above, the offset to be added to the base register $s3 must be 4 × 8, or 32, so 
that the load address will select A[8] and not A[8/4]. (See the related pitfall on 
page 175 of Section 2.18.)

Hardware/
Software
Interface

Hardware/
Software
Interface

alignment restriction 
A requirement that data 
be aligned in memory on 
natural boundaries.

alignment restriction 
A requirement that data 
be aligned in memory on 
natural boundaries.

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words. 
The changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word 
addresses are multiples of 4: there are 4 bytes in a word. 

Processor Memory

Byte Address Data

1

101

10

100

0

4

8

12
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The instruction complementary to load is traditionally called store; it copies 
data from a register to memory. The format of a store is similar to that of a load:  
the name of the operation, followed by the register to be stored, then offset to select 
the array element, and fi nally the base register. Once again, the MIPS address is 
specifi ed in part by a constant and in part by the contents of a register. The actual 
MIPS name is sw, standing for store word. 

Compiling Using Load and Store

Assume variable h is associated with register $s2 and the base address of the 
array A is in $s3. What is the MIPS assembly code for the C assignment state-
ment below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the oper-
ands are in memory, so we need even more MIPS instructions. The fi rst two 
instructions are the same as the prior example, except this time we use the 
proper offset for byte addressing in the load word instruction to select A[8], 
and the add instruction places the sum in $t0:

lw   $t0,32($s3)  # Temporary reg $t0 gets A[8]
add  $t0,$s2,$t0  # Temporary reg $t0 gets h + A[8]

The fi nal instruction stores the sum into A[12], using 48 (4 × 12) as the off set 
and register $s3 as the base register.

sw   $t0,48($s3) # Stores h + A[8] back into A[12]

Load word and store word are the instructions that copy words between 
memory and registers in the MIPS architecture. Other brands of computers use 
other instructions along with load and store to transfer data. An architecture with 
such alternatives is the Intel x86, described in Section 2.17.

EXAMPLEEXAMPLE

ANSWERANSWER
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86 Chapter 2 Instructions: Language of the Computer

Many programs have more variables than computers have registers. Consequently, 
the compiler tries to keep the most frequently used variables in registers and places 
the rest in memory, using loads and stores to move variables between regis ters and 
memory. The process of putting less commonly used variables (or those needed 
later) into memory is called spilling registers. 

The hardware principle relating size and speed suggests that memory must be 
slower than registers, since there are fewer registers. This is indeed the case; data 
accesses are faster if data is in registers instead of memory. 

Moreover, data is more useful when in a register. A MIPS arithmetic instruc-
tion can read two registers, operate on them, and write the result. A MIPS data 
transfer instruction only reads one operand or writes one operand, without oper-
ating on it. 

Thus, registers take less time to access and have higher throughput than mem ory, 
making data in registers both faster to access and simpler to use. Accessing registers 
also uses less energy than accessing memory. To achieve highest performance and 
conserve energy, compilers must use registers  effi ciently.

Constant or Immediate Operands

Many times a program will use a constant in an operation—for example, incre-
menting an index to point to the next element of an array. In fact, more than half 
of the MIPS arithmetic instructions have a constant as an operand when running 
the SPEC2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a con stant 
from memory to use one. (The constants would have been placed in mem ory when 
the program was loaded.) For example, to add the constant 4 to register $s3, we 
could use the code

lw $t0, AddrConstant4($s1) # $t0 = constant 4

add $s3,$s3,$t0 # $s3 = $s3 + $t0 ($t0 == 4)

assuming that $s1 + AddrConstant4 is the memory address of the constant 4.
An alternative that avoids the load instruction is to offer versions of the arith-

metic instructions in which one operand is a constant. This quick add instruction 
with one constant operand is called add immediate or addi. To add 4 to register 
$s3, we just write

addi $s3,$s3,4 # $s3 = $s3 + 4

Immediate instructions illustrate the third hardware design principle, fi rst 
mentioned in the Fallacies and Pitfalls of Chapter 1:

Design Principle 3: Make the common case fast.

Hardware/
Software
Interface

Hardware/
Software
Interface

03-Ch02-P374493.indd   8603-Ch02-P374493.indd   86 9/30/08   3:22:46 PM9/30/08   3:22:46 PM



Constant operands occur frequently, and by including constants inside arithmetic 
instructions, operations are much faster and use less energy than if constants were 
loaded from memory.

The constant zero has another role, which is to simplify the instruction set by 
offering useful variations. For example, the move operation is just an add instruc-
tion where one operand is zero. Hence, MIPS dedicates a register $zero to be hard-
wired to the value zero. (As you might expect, it is register number 0.)

Given the importance of registers, what is the rate of increase in the number of 
registers in a chip over time?

1. Very fast: They increase as fast as Moore’s law, which predicts doubling the 
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the 
computer, there is inertia in instruction set architecture, and so the number 
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a 
64-bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight, 
they are offi  cially called MIPS-32 and MIPS-64. In this chapter, we use a subset of 
MIPS-32.  Appendix E shows the differences between MIPS-32 and MIPS-64.

The MIPS offset plus base register addressing is an excellent match to structures 
as well as arrays, since the register can point to the beginning of the structure and the 
offset can select the desired element. We’ll see such an example in Section 2.13.

The register in the data transfer instructions was originally invented to hold an index 
of an array with the offset used for the starting address of an array. Thus, the base 
register is also called the index register. Today’s memories are much larger and the 
software model of data allocation is more sophisticated, so the base address of the 
array is normally passed in a register since it won’t fi t in the offset, as we shall see.

Since MIPS supports negative constants, there is no need for subtract immediate in 
MIPS.

 2.4 Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught 
to think in base 10, but numbers may be represented in any base. For example, 123 
base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic 
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are 
called decimal numbers, base 2 numbers are called binary numbers.) 

A single digit of a binary number is thus the “atom” of computing, since all 
information is composed of binary digits or bits. This fundamental building block 

Check 
Yourself
Check 
Yourself

binary digit Also 
called binary bit. One 
of the two  numbers 
in base 2, 0 or 1, that 
are the components of 
information.

binary digit Also 
called binary bit. One 
of the two  numbers 
in base 2, 0 or 1, that 
are the components of 
information.
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88 Chapter 2 Instructions: Language of the Computer

can be one of two values, which can be thought of as several alternatives: high or 
low, on or off, true or false, or 1 or 0.

Generalizing the point, in any number base, the value of ith digit d is

d × Basei

where i starts at 0 and increases from right to left. This leads to an obvious 
way to number the bits in the word: simply use the power of the base for that 
bit. We subscript decimal numbers with ten and binary numbers with two. For 
example,

1011two

represents

(1 × 23)  + (0 × 22) + (1 × 21) + (1 × 20)ten
= (1 × 8) + (0 × 4) + (1 × 2) + (1 × 1)ten 
=    8 +    0      +    2      +    1ten 
= 11ten

We number the bits 0, 1, 2, 3,  .  .  .  from right to left in a word. The drawing below 
shows the numbering of bits within a MIPS word and the placement of the num ber 
1011two:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and rightmost 
may be unclear. Hence, the phrase least signifi cant bit is used to refer to the right-
most bit (bit 0 above) and most signifi cant bit to the leftmost bit (bit 31).

The MIPS word is 32 bits long, so we can represent 232 different 32-bit patterns. 
It is natural to let these combinations represent the numbers from 0 to 232 − 1 
(4,294,967,295ten):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = 2ten
 . . . . . .
1111 1111 1111 1111 1111 1111 1111 1101two = 4,294,967,293ten
1111 1111 1111 1111 1111 1111 1111 1110two = 4,294,967,294ten
1111 1111 1111 1111 1111 1111 1111 1111two = 4,294,967,295ten

That is, 32-bit binary numbers can be represented in terms of the bit value times a 
power of 2 (here xi means the ith bit of x):

least signifi cant bit 
The right most bit in a 
MIPS word.

most signifi cant bit 
The left most bit in a 
MIPS word.

least signifi cant bit 
The right most bit in a 
MIPS word.

most signifi cant bit 
The left most bit in a 
MIPS word.
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(x31 × 231) + (x30 × 230) + (x29 × 229) + . . . + (x1 × 21) + (x0 × 20)

Keep in mind that the binary bit patterns above are simply representatives of 
numbers. Numbers really have an infi nite number of digits, with almost all being 
0 except for a few of the rightmost digits. We just don’t normally show leading 0s.

Hardware can be designed to add, subtract, multiply, and divide these binary 
bit patterns. If the number that is the proper result of such operations cannot be 
represented by these rightmost hardware bits, overfl ow is said to have occurred. 
It’s up to the programming language, the operating system, and the program to 
determine what to do if overfl ow occurs.

Computer programs calculate both positive and negative numbers, so we need a 
representation that distinguishes the positive from the negative. The most obvi ous 
solution is to add a separate sign, which conveniently can be represented in a single 
bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s 
not obvious where to put the sign bit. To the right? To the left? Early computers 
tried both. Second, adders for sign and magnitude may need an extra step to set 
the sign because we can’t know in advance what the proper sign will be. Finally, a 
separate sign bit means that sign and magnitude has both a positive and a negative 
zero, which can lead to problems for inattentive programmers. As a result of these 
shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what 
would be the result for unsigned numbers if we tried to subtract a large number 
from a small one. The answer is that it would try to borrow from a string of lead ing 
0s, so the result would have a string of leading 1s. 

Given that there was no obvious better alternative, the fi nal solution was to pick 
the representation that made the hardware simple: leading 0s mean positive, and 
leading 1s mean negative. This convention for representing signed binary numbers 
is called two’s complement representation:

0000  0000  0000  0000  0000  0000  0000  0000two =  0ten
0000  0000  0000  0000  0000  0000  0000  0001two =  1ten
0000  0000  0000  0000  0000  0000  0000  0010two =  2ten
 . . .   . . .

0111  1111  1111  1111  1111  1111  1111  1101two =  2,147,483,645ten
0111  1111  1111  1111  1111  1111  1111  1110two =  2,147,483,646ten
0111  1111  1111  1111  1111  1111  1111  1111two =  2,147,483,647ten
1000  0000  0000  0000  0000  0000  0000  0000two =  –2,147,483,648ten
1000  0000  0000  0000  0000  0000  0000  0001two =  –2,147,483,647ten
1000  0000  0000  0000  0000  0000  0000  0010two = –2,147,483,646ten
. . .    . . . 

1111  1111  1111  1111  1111  1111  1111  1101two =  –3ten
1111  1111  1111  1111  1111  1111  1111  1110two =  –2ten
1111  1111  1111  1111  1111  1111  1111  1111two =  –1ten

 2.4 Signed and Unsigned Numbers 89
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90 Chapter 2 Instructions: Language of the Computer

The positive half of the numbers, from 0 to 2,147,483,647ten (231 − 1), use the 
same representation as before. The following bit pattern (1000 . . . 0000two) rep-
resents the most negative number −2,147,483,648ten (−231). It is followed by a 
declining set of negative numbers: −2,147,483,647ten (1000 . . . 0001two) down to 
−1ten (1111 . . . 1111two). 

Two’s complement does have one negative number, −2,147,483,648ten, that has 
no corresponding positive number. Such imbalance was also a worry to the inat-
tentive programmer, but sign and magnitude had problems for both the program-
mer and the hardware designer. Consequently, every computer today uses two’s 
complement binary representations for signed numbers.

Two’s complement representation has the advantage that all negative numbers 
have a 1 in the most signifi cant bit. Consequently, hardware needs to test only this 
bit to see if a number is positive or negative (with the number 0 considered posi-
tive). This bit is often called the sign bit. By recognizing the role of the sign bit, we 
can represent positive and negative 32-bit numbers in terms of the bit value times 
a power of 2:

(x31 × −231) + (x30 × 230) + (x29 × 229) + . . . + (x1 × 21) + (x0 × 20)

The sign bit is multiplied by −231, and the rest of the bits are then multiplied by 
positive versions of their respective base values.

Binary to Decimal Conversion

What is the decimal value of this 32-bit two’s complement number?

1111   1111   1111   1111   1111   1111   1111   1100two

Substituting the number’s bit values into the formula above:

(1 × −231) + (1 × 230) + (1 × 229) + . . .  + (1 × 22) + (0 × 21) + (0 × 20)
= −231       +      230     +     229      + . . .  +      22     +      0       +     0
= −2,147,483,648ten + 2,147,483,644ten
= − 4ten

We’ll see a shortcut to simplify conversion from negative to positive soon.

Just as an operation on unsigned numbers can overfl ow the capacity of hard-
ware to represent the result, so can an operation on two’s complement numbers. 
Overfl ow occurs when the leftmost retained bit of the binary bit pattern is not the 
same as the infi nite number of digits to the left (the sign bit is incorrect): a 0 on 
the left of the bit pattern when the number is negative or a 1 when the number is 
positive.

EXAMPLEEXAMPLE

ANSWERANSWER
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Unlike the numbers discussed above, memory addresses naturally start at 0 and con-
tinue to the largest address. Put another way, negative addresses make no sense. Thus, 
programs want to deal sometimes with numbers that can be positive or negative and 
sometimes with numbers that can be only positive. Some pro gramming languages 
refl ect this distinction. C, for example, names the former integers (declared as int in 
the program) and the latter unsigned integers (unsigned int). Some C style guides 
even recommend declaring the former as signed int to keep the distinction clear.

Let’s examine two useful shortcuts when working with two’s complement 
numbers. The fi rst shortcut is a quick way to negate a two’s complement binary 
number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result. This 
shortcut is based on the observation that the sum of a number and its inverted 
representation must be 111 . . . 111two, which represents −1. Since x + x– = −1, 
therefore x + x– + 1 = 0 or x– + 1 = −x.

Negation Shortcut

Negate 2ten, and then check the result by negating −2ten.

2ten = 0000 0000 0000 0000 0000 0000 0000 0010two

Negating this number by inverting the bits and adding one,

  1111  1111  1111  1111  1111  1111  1111  1101two
 +                                    1two

 =  1111  1111  1111  1111  1111  1111  1111  1110two
 =  –2ten

Hardware/ 
Software 
Interface

Hardware/ 
Software 
Interface

EXAMPLEEXAMPLE

ANSWERANSWER
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92 Chapter 2 Instructions: Language of the Computer

Going the other direction,

 1111  1111  1111  1111  1111  1111  1111  1110two

is fi rst inverted and then incremented:

 0000  0000  0000  0000  0000  0000  0000  0001two
 +                                     1two

 = 0000  0000  0000  0000  0000  0000  0000  0010two
 = 2ten

Our next shortcut tells us how to convert a binary number represented in n bits 
to a number represented with more than n bits. For example, the immediate fi eld 
in the load, store, branch, add, and set on less than instructions  contains a two’s 
complement 16-bit number, representing −32,768ten (−215) to 32,767ten (215 − 1). 
To add the immediate fi eld to a 32-bit register, the computer must convert that 
16-bit number to its 32-bit equivalent. The shortcut is to take the most signifi cant 
bit from the smaller quantity—the sign bit—and replicate it to fi ll the new bits of 
the larger quantity. The old bits are simply copied into the right portion of the new 
word. This shortcut is commonly called sign  extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2ten and −2ten to 32-bit binary numbers.

The 16-bit binary version of the number 2 is

0000  0000  0000  0010two = 2ten

It is converted to a 32-bit number by making 16 copies of the value in the most 
signifi cant bit (0) and placing that in the left-hand half of the word. The right 
half gets the old value:

0000  0000  0000  0000  0000  0000  0000  0010two = 2ten

EXAMPLEEXAMPLE

ANSWERANSWER
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Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,

0000  0000  0000  0010two 

becomes

1111  1111  1111  1101two
+                1two

= 1111  1111  1111  1110two

Creating a 32-bit version of the negative number means copying the sign bit 
16 times and placing it on the left:

1111  1111  1111  1111  1111  1111  1111  1110two = –2ten

This trick works because positive two’s complement numbers really have an 
infi nite number of 0s on the left and negative two’s complement numbers have an 
infi nite number of 1s. The binary bit pattern representing a number hides leading 
bits to fi t the width of the hardware; sign extension simply restores some of them.

Summary

The main point of this section is that we need to represent both positive and neg-
ative integers within a computer word, and although there are pros and cons to any 
option, the overwhelming choice since 1965 has been two’s complement. 

What is the decimal value of this 64-bit two’s complement number?

1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1111  1000two

1) –4ten

2) –8ten 

3) –16ten 

4) 18,446,744,073,709,551,609ten

Elaboration: Two’s complement gets its name from the rule that the unsigned sum 
of an n-bit number and its negative is 2n; hence, the complement or negation of a two’s 
complement number x is 2n – x. 

Check 
Yourself
Check 
Yourself
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94 Chapter 2 Instructions: Language of the Computer

A third alternative representation to two’s complement and sign and magnitude is 
called one’s complement. The negative of a one’s complement is found by inverting each 
bit, from 0 to 1 and from 1 to 0, which helps explain its name since the complement of 
x is 2n – x – 1. It was also an attempt to be a better solution than sign and magnitude, 
and several early scientifi c com puters did use the notation. This representation is 
similar to two’s complement except that it also has two 0s: 00 . . . 00two is positive 
0 and 11 . . . 11two is negative 0. The most negative number, 10 . . . 000two, represents 
–2,147,483,647ten, and so the positives and negatives are bal anced. One’s complement 
adders did need an extra step to subtract a number, and hence two’s complement 
dominates today.

A fi nal notation, which we will look at when we discuss fl oating point in Chapter 3, 
is to represent the most negative value by 00 . . . 000two and the most positive value 
by 11 . . . 11two, with 0 typi cally having the value 10  . . . 00two. This is called a biased 
notation, since it biases the number such that the number plus the bias has a non neg-
ative representation. 

Elaboration: For signed decimal numbers, we used “–” to represent negative because 
there are no limits to the size of a decimal number. Given a fi xed word size, binary and 
hexadecimal (see Figure 2.4) bit strings can encode the sign; hence we do not normally 
use “+” or “–” with binary or hexadecimal notation.

 2.5 Representing Instructions in the Computer

We are now ready to explain the difference between the way humans instruct 
computers and the way computers see instructions. 

Instructions are kept in the computer as a series of high and low electronic 
signals and may be represented as numbers. In fact, each piece of an instruction 
can be considered as an individual number, and placing these numbers side by side 
forms the instruction. 

Since registers are referred to by almost all instructions, there must be a con-
vention to map register names into numbers. In MIPS assembly language, regis ters 
$s0 to $s7 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers 
8 to 15. Hence, $s0 means register 16, $s1 means register 17, $s2 means register 
18, . . . , $t0 means register 8, $t1 means register 9, and so on. We’ll describe the 
convention for the rest of the 32 registers in the following sections.

one’s complement 
A notation that represents 
the most  negative value 
by 10 . . . 000two and the 
most positive value by 
01 . . . 11two, leaving 
an equal number of 
negatives and posi tives 
but ending up with 
two zeros, one positive 
(00 . . . 00two) and one 
negative (11 . . . 11two). 
The term is also used to 
mean the inversion of 
every bit in a pattern: 0 to 
1 and 1 to 0.

biased notation 
A notation that represents 
the most negative value 
by 00 . . . 000two and 
the most positive value 
by 11 . . . 11two, with 0 
typically having the value 
10 . . . 00two, thereby 
biasing the number such 
that the number plus the 
bias has a nonnegative 
representation.

one’s complement 
A notation that represents 
the most  negative value 
by 10 . . . 000two and the 
most positive value by 
01 . . . 11two, leaving 
an equal number of 
negatives and posi tives 
but ending up with 
two zeros, one positive 
(00 . . . 00two) and one 
negative (11 . . . 11two). 
The term is also used to 
mean the inversion of 
every bit in a pattern: 0 to 
1 and 1 to 0.

biased notation 
A notation that represents 
the most negative value 
by 00 . . . 000two and 
the most positive value 
by 11 . . . 11two, with 0 
typically having the value 
10 . . . 00two, thereby 
biasing the number such 
that the number plus the 
bias has a nonnegative 
representation.
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Translating a MIPS Assembly Instruction into a Machine Instruction

Let’s do the next step in the refi nement of the MIPS language as an example. 
We’ll show the real MIPS language version of the instruction represented 
symbolically as

add $t0,$s1,$s2

fi rst as a combination of decimal numbers and then of binary numbers.

The decimal representation is

EXAMPLEEXAMPLE

ANSWERANSWER
0 17 18 8 0 32

Each of these segments of an instruction is called a fi eld. The fi rst and last fi elds 
(containing 0 and 32 in this case) in combination tell the MIPS computer that 
this instruction performs addition. The second fi eld gives the number of the reg-
ister that is the fi rst source operand of the addition operation (17 = $s1), and the 
third fi eld gives the other source operand for the addition (18 = $s2). The fourth 
fi eld contains the number of the register that is to receive the sum (8 = $t0). The 
fi fth fi eld is unused in this instruction, so it is set to 0. Thus, this instruction adds 
register $s1 to register $s2 and places the sum in register $t0.

This instruction can also be represented as fi elds of binary numbers as 
opposed to decimal:

000000 10001 10010 01000 00000 100000

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

This layout of the instruction is called the instruction format. As you can see 
from counting the number of bits, this MIPS instruction takes exactly 32 bits—the 
same size as a data word. In keeping with our design principle that simplicity favors 
regularity, all MIPS instructions are 32 bits long.

To distinguish it from assembly language, we call the numeric version of instruc-
tions machine language and a sequence of such instructions machine code.

It would appear that you would now be reading and writing long, tedious strings 
of binary numbers. We avoid that tedium by using a higher base than binary that 
converts easily into binary. Since almost all computer data sizes are multiples of 4, 
hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2, we can 
trivially convert by replacing each group of four binary digits by a single hexadeci-
mal digit, and vice versa. Figure 2.4 converts between hexadecimal and binary. 

instruction format 
A form of representation 
of an instruction 
composed of fi elds of 
binary numbers. 

machine language 
Binary rep resentation 
used for communi cation 
within a computer system.

hexadecimal 
Numbers in base 16.

instruction format 
A form of representation 
of an instruction 
composed of fi elds of 
binary numbers. 

machine language 
Binary rep resentation 
used for communi cation 
within a computer system.

hexadecimal 
Numbers in base 16.
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96 Chapter 2 Instructions: Language of the Computer

Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary 
 

0hex 0000two 4hex 0100two 8hex 1000two chex 1100two

1hex 0001two 5hex 0101two 9hex 1001two dhex 1101two

2hex 0010two 6hex 0110two ahex 1010two ehex 1110two

3hex 0011two 7hex 0111two bhex 1011two fhex 1111two

FIGURE 2.4 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary 
digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

Because we frequently deal with different number bases, to avoid confusion we 
will subscript decimal numbers with ten, binary numbers with two, and hexadeci-
mal numbers with hex. (If there is no subscript, the default is base 10.) By the way, 
C and Java use the notation 0xnnnn for hexadecimal numbers. 

Binary to Hexadecimal and Back

Convert the following hexadecimal and binary numbers into the other base: 

 eca8  6420hex

0001   0011 0101    0111 1001  1011    1101   1111 two

Using Figure 2.4, the answer is just a table lookup one way:  

EXAMPLEEXAMPLE

ANSWERANSWER
eca8  6420hex

 1110   1100   1010   1000   0110  0100   0010   0000two

And then the other direction: 

 0001   0011 0101    0111 1001  1011    1101   1111two

 

1357 9bdfhex

MIPS Fields

MIPS fi elds are given names to make them easier to discuss:

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
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 2.5 Representing Instructions in the Computer 97

Here is the meaning of each name of the fi elds in MIPS instructions:

op: Basic operation of the instruction, traditionally called the opcode.

rs: The fi rst register source operand.

rt: The second register source operand.

rd: The register destination operand. It gets the result of the operation.

shamt: Shift amount. (Section 2.6 explains shift instructions and this term; it 
will not be used until then, and hence the fi eld contains zero in this sec tion.)

funct: Function. This fi eld, often called the function code, selects the specifi c 
variant of the operation in the op fi eld.

A problem occurs when an instruction needs longer fi elds than those shown 
above. For example, the load word instruction must specify two registers and a 
constant. If the address were to use one of the 5-bit fi elds in the format above, 
the constant within the load word instruction would be limited to only 25 or 32. 
This constant is used to select elements from arrays or data structures, and it often 
needs to be much larger than 32. This 5-bit fi eld is too small to be useful. 

Hence, we have a confl ict between the desire to keep all instructions the same 
length and the desire to have a single instruction format. This leads us to the fi nal 
hardware design principle:

Design Principle 4: Good design demands good compromises. 

The compromise chosen by the MIPS designers is to keep all instructions the 
same length, thereby requiring different kinds of instruction formats for different 
kinds of instructions. For example, the format above is called R-type (for register) 
or R-format. A second type of instruction format is called I-type (for immediate) 
or I-format and is used by the immediate and data transfer instructions. The fi elds 
of I-format are

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

The 16-bit address means a load word instruction can load any word within a 
region of ±215 or 32,768 bytes (±213 or 8192 words) of the address in the base 
reg ister rs. Similarly, add immediate is limited to constants no larger than ±215. We 
see that more than 32 registers would be diffi cult in this format, as the rs and rt 
fi elds would each need another bit, making it harder to fi t everything in one word.

Let’s look at the load word instruction from page 83:

lw   $t0,32($s3) # Temporary reg $t0 gets A[8]

■

■

■

■

■

■

opcode The fi eld that 
denotes the operation and 
format of an instruction.

opcode The fi eld that 
denotes the operation and 
format of an instruction.
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98 Chapter 2 Instructions: Language of the Computer

Here, 19 (for $s3) is placed in the rs fi eld, 8 (for $t0) is placed in the rt fi eld, and 
32 is placed in the address fi eld. Note that the meaning of the rt fi eld has changed 
for this instruction: in a load word instruction, the rt fi eld specifi es the destination 
register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the complex-
ity by keeping the formats similar. For example, the fi rst three fi elds of the R-type and 
I-type formats are the same size and have the same names; the length of the fourth 
fi eld in I-type is equal to the sum of the lengths of the last three fi elds of R-type. 

In case you were wondering, the formats are distinguished by the values in the 
fi rst fi eld: each format is assigned a distinct set of values in the fi rst fi eld (op) so 
that the hardware knows whether to treat the last half of the instruction as three 
fi elds (R-type) or as a single fi eld (I-type). Figure 2.5 shows the numbers used in 
each fi eld for the MIPS instructions covered here.

Instruction Format op rs rt rd shamt funct address

add R 0 reg reg reg 0 32ten n.a.

sub (subtract) R 0 reg reg reg 0 34ten n.a.

add immediate I 8ten reg reg n.a. n.a. n.a. constant

lw (load word) I 35ten reg reg n.a. n.a. n.a. address

sw (store word) I 43ten reg reg n.a. n.a. n.a. address

FIGURE 2.5 MIPS instruction encoding. In the table above, “reg” means a register number between 
0 and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this fi eld does not appear in this 
format. Note that add and sub instructions have the same value in the op fi eld; the hardware uses the funct 
fi eld to decide the variant of the operation: add (32) or subtract (34).

Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes to 
what the computer executes. If $t1 has the base of the array A and $s2 corre-
sponds to h, the assignment statement 

A[300] = h + A[300];

is compiled into

lw   $t0,1200($t1) # Temporary reg $t0 gets A[300]
add  $t0,$s2,$t0 # Temporary reg $t0 gets h + A[300]
sw   $t0,1200($t1) # Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?

EXAMPLEEXAMPLE
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For convenience, let’s fi rst represent the machine language instructions using 
decimal numbers. From Figure 2.5, we can determine the three machine lan-
guage instructions:

ANSWERANSWER

Note the similarity of the binary representations of the fi rst and last instruc-
tions. The only difference is in the third bit from the left, which is highlighted here.

Figure 2.6 summarizes the portions of MIPS machine language described in this 
section. As we shall see in Chapter 4, the similarity of the binary representa tions 
of related instructions simplifi es hardware design. These similarities are another 
example of regularity in the MIPS architecture.
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op rs rt rd
address/

shamt funct

35 9 8 1200

0 18 8 8 0 32

43 9 8 1200

The lw instruction is identifi ed by 35 (see Figure 2.5) in the fi rst fi eld (op). 
The base register 9 ($t1) is specifi ed in the second fi eld (rs), and the destination 
reg ister 8 ($t0) is specifi ed in the third fi eld (rt). The offset to select A[300] 
(1200 = 300 × 4) is found in the fi nal fi eld (address). 

The add instruction that follows is specifi ed with 0 in the fi rst fi eld (op) and 
32 in the last fi eld (funct). The three register operands (18, 8, and 8) are found 
in the second, third, and fourth fi elds and correspond to $s2, $t0, and $t0. 

The sw instruction is identifi ed with 43 in the fi rst fi eld. The rest of this fi nal 
instruction is identical to the lw instruction. 

Since 1200ten = 0000 0100 1011 0000two, the binary equivalent to the decimal 
form is:

100011 01001 01000 0000 0100 1011 0000

000000 10010 01000 01000 00000 100000

101011 01001 01000 0000 0100 1011 0000
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100 Chapter 2 Instructions: Language of the Computer

Today’s computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like numbers.

These principles lead to the stored-program concept; its invention let the 
computing genie out of its bottle. Figure 2.7 shows the power of the concept; 
specifi cally, memory can contain the source code for an editor program, the 
corresponding compiled machine code, the text that the compiled program is 
using, and even the compiler that generated the machine code. 

One consequence of instructions as numbers is that programs are often 
shipped as fi les of binary numbers. The commercial implication is that 
computers can inherit ready-made software provided they are compatible 
with an existing instruction set. Such “binary compatibility” often leads 
industry to align around a small number of instruction set architectures.

The BIG
Picture

The BIG
Picture

MIPS machine language

Name Format Example Comments

add R 0 18 19 17 0 32 add  $s1,$s2,$s3
sub R 0 18 19 17 0 34 sub  $s1,$s2,$s3
addi I 8 18 17 100 addi  $s1,$s2,100
lw I 35 18 17 100 lw   $s1,100($s2)
sw I 43 18 17 100 sw   $s1,100($s2)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions are 32 bits long

R-format R op rs rt rd shamt funct Arithmetic instruction format

I-format I op rs rt address Data transfer format

FIGURE 2.6 MIPS architecture revealed through Section 2.5. The two MIPS instruction formats so far are R and I. The fi rst 
16 bits are the same: both contain an op fi eld, giving the base operation; an rs fi eld, giving one of the sources; and the rt fi eld, which speci fi es 
the other source operand, except for load word, where it specifi es the destination register. R-format divides the last 16 bits into an rd fi eld, 
specifying the destination register; the shamt fi eld, which Section 2.6 explains; and the funct fi eld, which specifi es the specifi c operation of 
R-format instructions. I-format combines the last 16 bits into a single address fi eld. 
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What MIPS instruction does this represent? Chose from one of the four options 
below.

Check 
Yourself
Check 
Yourself

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs 
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch hap-
pens simply by loading memory with programs and data and then telling the computer to begin executing at 
a given location in memory. Treating instructions in the same way as data greatly simplifi es both the memory 
hardware and the software of computer systems. Specifi cally, the memory technology needed for data can 
also be used for programs, and programs like compilers, for instance, can translate code written in a notation 
far more convenient for humans into code that the computer can understand. 

Memory

Accounting program
(machine code)

Processor

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

Source code in C
for editor program

op rs rt rd shamt funct

0 8 9 10 0 34

1. add $s0, $s1, $s2

2. add $s2, $s0, $s1

3. add $s2, $s1, $s0

4. sub $s2, $s0, $s1

 2.5 Representing Instructions in the Computer 101
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102 Chapter 2 Instructions: Language of the Computer

 2.6 Logical Operations

Although the fi rst computers operated on full words, it soon became clear that it 
was useful to operate on fi elds of bits within a word or even on individual bits. 
Examining characters within a word, each of which is stored as 8 bits, is one 
exam ple of such an operation (see Section 2.9). It follows that operations were added 
to programming languages and instruction set architectures to simplify, among 
other things, the packing and unpacking of bits into words. These instructions 
are called logical operations. Figure 2.8 shows logical operations in C, Java, and 
MIPS. 

Logical operations C operators Java operators MIPS instructions

 Shift left << <<  sll
 Shift right >> >>>  srl
 Bit-by-bit AND & &  and, andi
 Bit-by-bit OR | |  or, ori
 Bit-by-bit NOT ~ ~  nor

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS 
implements NOT using a NOR with one operand being zero.

The fi rst class of such operations is called shifts. They move all the bits in a word 
to the left or right, fi lling the emptied bits with 0s. For example, if register $s0 
contained

0000  0000  0000  0000  0000  0000  0000  1001two = 9ten

and the instruction to shift left by 4 was executed, the new value would be:

0000  0000  0000  0000  0000  0000  1001    0000two= 144ten

The dual of a shift left is a shift right. The actual name of the two MIPS shift 
instructions are called shift left logical (sll) and shift right logical (srl). The fol lowing 

“Contrariwise,” 
continued Tweedledee, 
“if it was so, it might 
be; and if it were so, 
it would be; but as it 
isn’t, it ain’t. That’s 
logic.”

Lewis Carroll, Alice’s 
Adven tures in 
Wonderland, 1865

“Contrariwise,” 
continued Tweedledee, 
“if it was so, it might 
be; and if it were so, 
it would be; but as it 
isn’t, it ain’t. That’s 
logic.”

Lewis Carroll, Alice’s 
Adven tures in 
Wonderland, 1865
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instruction performs the operation above, assuming that the original value was in 
register $s0 and the result should go in register $t2:

sll $t2,$s0,4 # reg $t2 = reg $s0 << 4 bits

We delayed explaining the shamt fi eld in the R-format. Used in shift instruc tions, 
it stands for shift amount. Hence, the machine language version of the instruction 
above is

op rs rt rd shamt funct

0 0 16 10 4 0

The encoding of sll is 0 in both the op and funct fi elds, rd contains 10 (register 
$t2), rt contains 16 (register $s0), and shamt contains 4. The rs fi eld is unused 
and thus is set to 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the 
same result as multiplying by 2i, just as shifting a decimal number by i digits is 
equivalent to multiplying by 10i. For example, the above sll shifts by 4, which 
gives the same result as multiplying by 24 or 16. The first bit pattern above 
represents 9, and 9 × 16 = 144, the value of the second bit pattern.

Another useful operation that isolates fi elds is AND. (We capitalize the word 
to avoid confusion between the operation and the English conjunction.) AND is a 
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands are 
1. For example, if register $t2 contains

0000  0000  0000  0000  0000  1101 1100  0000two

and register $t1 contains

0000  0000  0000  0000  0011  1100  0000  0000two

then, after executing the MIPS instruction

and $t0,$t1,$t2 # reg $t0 = reg $t1 & reg $t2

the value of register $t0 would be

0000  0000  0000  0000  0000  1100  0000  0000two

AND A logical bit-by-
bit oper ation with two 
operands that calculates 
a 1 only if there is a 1 in 
both operands.

AND A logical bit-by-
bit oper ation with two 
operands that calculates 
a 1 only if there is a 1 in 
both operands.
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104 Chapter 2 Instructions: Language of the Computer

As you can see, AND can apply a bit pattern to a set of bits to force 0s where there 
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is tradition ally 
called a mask, since the mask “conceals” some bits.

To place a value into one of these seas of 0s, there is the dual to AND, called OR. 
It is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1. To 
elaborate, if the registers $t1 and $t2 are unchanged from the preceding example, 
the result of the MIPS instruction

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

is this value in register $t0: 

0000  0000  0000  0000  0011  1101  1100  0000two 

The fi nal logical operation is a contrarian. NOT takes one operand and 
places a 1 in the result if one operand bit is a 0, and vice versa. In keeping with the 
three-operand format, the designers of MIPS decided to include the instruction 
NOR (NOT OR) instead of NOT. If one operand is zero, then it is equivalent to 
NOT: A NOR 0 = NOT (A OR 0) = NOT (A).

If the register $t1 is unchanged from the preceding example and register $t3 
has the value 0, the result of the MIPS instruction

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $t1 | reg $t3)

is this value in register $t0: 

1111  1111  1111  1111  1100  0011  1111  1111two

Figure 2.8 above shows the relationship between the C and Java operators and 
the MIPS instructions. Constants are useful in AND and OR logical operations 
as well as in arithmetic operations, so MIPS also provides the instructions and 
immediate (andi) and or immediate (ori). Constants are rare for NOR, since its 
main use is to invert the bits of a single operand; thus, the MIPS instruction set 
architecture has no immediate version.

Elaboration: The full MIPS instruction set also includes exclusive or (XOR), which 
sets the bit to 1 when two corresponding bits differ, and to 0 when they are the same. 
C allows bit fi elds or fi elds to be defi ned within words, both allowing objects to be 

OR A logical bit-by-
bit opera tion with two 
operands that cal culates 
a 1 if there is a 1 in either 
operand.

OR A logical bit-by-
bit opera tion with two 
operands that cal culates 
a 1 if there is a 1 in either 
operand.

NOT A logical bit-by-
bit oper ation with one 
operand that inverts the 
bits; that is, it replaces 
every 1 with a 0, and every 
0 with a 1.

NOT A logical bit-by-
bit oper ation with one 
operand that inverts the 
bits; that is, it replaces 
every 1 with a 0, and every 
0 with a 1.

NOR A logical bit-by-
bit oper ation with two 
operands that calculates 
the NOT of the OR of the 
two operands. That is, it 
cal culates a 1 only if there 
is a 0 in both operands.

NOR A logical bit-by-
bit oper ation with two 
operands that calculates 
the NOT of the OR of the 
two operands. That is, it 
cal culates a 1 only if there 
is a 0 in both operands.
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packed within a word and to match an externally enforced interface such as an I/O 
device. All fi elds must fi t within a single word. Fields are unsigned integers that can be 
as short as 1 bit. C compilers insert and extract fi elds using logical instructions in MIPS: 
and, or, sll, and srl.

Which operations can isolate a fi eld in a word?

1. AND

2. A shift left followed by a shift right

 2.7 Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make deci-
sions. Based on the input data and the values created during  computation, different 
instructions execute. Decision making is commonly  represented in programming 
languages using the if statement, sometimes combined with go to statements and 
labels. MIPS assembly language includes two  decision-making instructions, simi-
lar to an if statement with a go to. The fi rst  instruction is 

beq register1, register2, L1

This instruction means go to the statement labeled L1 if the value in register1 
equals the value in register2. The mnemonic beq stands for branch if equal. The 
second instruction is

bne register1, register2, L1 

It means go to the statement labeled L1 if the value in register1 does not equal 
the value in register2. The mnemonic bne stands for branch if not equal. These 
two instructions are traditionally called conditional branches.

Check 
Yourself
Check 
Yourself

The utility of an 
automatic computer 
lies in the possibility of 
using a given sequence of 
instructions repeatedly, 
the number of times it is 
iterated being dependent 
upon the results of the 
computation. ...This 
choice can be made 
to depend upon the 
sign of a number 
(zero being reckoned 
as plus for machine 
purposes). Consequently, 
we introduce an 
[instruction] (the 
conditional transfer 
[instruction]) which will, 
depending on the sign of 
a given number, cause 
the proper one of two 
routines to be exe cuted.

Burks, Goldstine, and 
von Neumann, 1947

The utility of an 
automatic computer 
lies in the possibility of 
using a given sequence of 
instructions repeatedly, 
the number of times it is 
iterated being dependent 
upon the results of the 
computation. ...This 
choice can be made 
to depend upon the 
sign of a number 
(zero being reckoned 
as plus for machine 
purposes). Consequently, 
we introduce an 
[instruction] (the 
conditional transfer 
[instruction]) which will, 
depending on the sign of 
a given number, cause 
the proper one of two 
routines to be exe cuted.

Burks, Goldstine, and 
von Neumann, 1947

conditional branch 
An instruction that 
requires the comparison 
of two values and that 
allows for a subsequent 
transfer of control to 
a new address in the 
program based on 
the outcome of the 
comparison.

conditional branch 
An instruction that 
requires the comparison 
of two values and that 
allows for a subsequent 
transfer of control to 
a new address in the 
program based on 
the outcome of the 
comparison.
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106 Chapter 2 Instructions: Language of the Computer

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the fi ve vari-
ables f through j correspond to the fi ve registers $s0 through $s4, what is the 
compiled MIPS code for this C if statement?

if (i == j) f = g + h; else f = g – h;

Figure 2.9 is a fl owchart of what the MIPS code should do. The fi rst expres-
sion compares for equality, so it would seem that we would want the branch if 
registers are equal instruction (beq). In general, the code will be more effi  cient 
if we test for the opposite condition to branch over the code that per forms the 
subsequent then part of the if (the label Else is defi ned below) and so we use 
the branch if registers are not equal instruction (bne):

bne $s3,$s4,Else # go to Else if i ≠ j

The next assignment statement performs a single operation, and if all the 
operands are allocated to registers, it is just one instruction:

add $s0,$s1,$s2 # f = g + h (skipped if i ≠ j)

We now need to go to the end of the if statement. This example introduces 
another kind of branch, often called an unconditional branch. This instruc-
tion says that the processor always follows the branch. To distinguish between 
conditional and unconditional branches, the MIPS name for this type of 
instruction is jump, abbreviated as j (the label Exit is defi ned below).

j Exit # go to Exit

The assignment statement in the else portion of the if statement can again 
be compiled into a single instruction. We just need to append the label Else 
to this instruction. We also show the label Exit that is after this instruction, 
showing the end of the if-then-else compiled code:

Else:sub $s0,$s1,$s2 # f = g – h (skipped if i = j)
Exit:

EXAMPLEEXAMPLE

ANSWERANSWER
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Notice that the assembler relieves the compiler and the assembly language pro-
grammer from the tedium of calculating addresses for branches, just as it does for 
calculating data addresses for loads and stores (see Section 2.12).

Compilers frequently create branches and labels where they do not appear in 
the programming language. Avoiding the burden of writing explicit labels and 
branches is one benefi t of writing in high-level programming languages and is a 
reason coding is faster at that level. 

Loops

Decisions are important both for choosing between two alternatives—found in if 
statements—and for iterating a computation—found in loops. The same assem bly 
instructions are the building blocks for both cases.  

Compiling a while Loop in C

Here is a traditional loop in C:

while (save[i] == k) 
 i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the 
array save is in $s6. What is the MIPS assembly code corresponding to this 
C segment? 

Hardware/
Software
Interface

Hardware/
Software
Interface

EXAMPLEEXAMPLE

FIGURE 2.9 Illustration of the options in the if statement above. The left box corresponds to 

the then part of the if statement, and the right box corresponds to the else part. 

f=g+h f=g–h

i=j i≠ j
i= =j?

Else:

Exit:

 2.7 Instructions for Making Decisions 107
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108 Chapter 2 Instructions: Language of the Computer

The fi rst step is to load save[i] into a temporary register. Before we can load 
save[i] into a temporary register, we need to have its address. Before we can 
add i to the base of array save to form the address, we must multiply the 
index i by 4 due to the byte addressing problem. Fortunately, we can use shift 
left logical, since shifting left by 2 bits multiplies by 22 or 4 (see page 103 in the 
prior section). We need to add the label Loop to it so that we can branch back 
to that instruction at the end of the loop:

Loop: sll  $t1,$s3,2 # Temp reg $t1 = i * 4

To get the address of save[i], we need to add $t1 and the base of save in $s6:

add $t1,$t1,$s6 # $t1 = address of save[i]

Now we can use that address to load save[i] into a temporary register:

lw  $t0,0($t1) # Temp reg $t0 = save[i]

The next instruction performs the loop test, exiting if save[i] ≠ k:

bne  $t0,$s5, Exit # go to Exit if save[i] ≠ k

The next instruction adds 1 to i:

addi  $s3,$s3,1 # i = i + 1

The end of the loop branches back to the while test at the top of the loop. We 
just add the Exit label after it, and we’re done:

j    Loop # go to Loop

Exit:

(See the exercises for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compil ing 
that they are given their own buzzword: a basic block is a sequence of instruc tions 
without branches, except possibly at the end, and without branch targets or branch 
labels, except possibly at the beginning. One of the fi rst early phases of compilation is 
breaking the program into basic blocks.

The test for equality or inequality is probably the most popular test, but some-
times it is useful to see if a variable is less than another variable. For example, a for 
loop may want to test to see if the index variable is less than 0. Such comparisons are 
accomplished in MIPS assembly language with an instruction that compares two 

ANSWERANSWER

Hardware/
Software
Interface

Hardware/
Software
Interface

basic block A sequence 
of instructions without 
branches (except possibly 
at the end) and without 
branch t argets or branch 
labels (except possibly at 
the  beginning).

basic block A sequence 
of instructions without 
branches (except possibly 
at the end) and without 
branch t argets or branch 
labels (except possibly at 
the  beginning).
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registers and sets a third register to 1 if the fi rst is less than the second; otherwise, it is 
set to 0. The MIPS instruction is called set on less than, or slt. For example,

slt     $t0, $s3, $s4 # $t0 = 1 if $s3 < $s4

means that register $t0 is set to 1 if the value in register $s3 is less than the value 
in register $s4; otherwise, register $t0 is set to 0. 

Constant operands are popular in comparisons, so there is an immediate ver-
sion of the set on less than instruction. To test if register $s2 is less than the con-
stant 10, we can just write

slti     $t0,$s2,10 # $t0 = 1 if $s2 < 10

MIPS compilers use the slt, slti, beq, bne, and the fi xed value of 0 (always 
available by reading register $zero) to create all relative conditions: equal, not 
equal, less than, less than or equal, greater than, greater than or equal. 

Heeding von Neumann’s warning about the simplicity of the “equipment,” the 
MIPS architecture doesn’t include branch on less than because it is too compli-
cated; either it would stretch the clock cycle time or it would take extra clock cycles 
per instruction. Two faster instructions are more useful.

Comparison instructions must deal with the dichotomy between signed and 
unsigned numbers. Sometimes a bit pattern with a 1 in the most signifi cant bit 
represents a negative number and, of course, is less than any positive number, 
which must have a 0 in the most signifi cant bit. With unsigned integers, on the 
other hand, a 1 in the most signifi cant bit represents a number that is larger than 
any that begins with a 0. (We’ll soon take advantage of this dual meaning of the 
most signifi cant bit to reduce the cost of the array bounds checking.)

MIPS offers two versions of the set on less than comparison to handle these 
alternatives. Set on less than (slt) and set on less than immediate (slti) work with 
signed integers. Unsigned integers are compared using set on less than unsigned 
(sltu) and set on less than immediate unsigned (sltiu).

Hardware/
Software
Interface

Hardware/
Software
Interface

Hardware/
Software
Interface

Hardware/
Software
Interface
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110 Chapter 2 Instructions: Language of the Computer

Signed versus Unsigned Comparison

Suppose register $s0 has the binary number

1111   1111   1111   1111   1111   1111   1111   1111two

and that register $s1 has the binary number

0000   0000   0000   0000   0000   0000   0000   0001two

What are the values of registers $t0 and $t1 after these two instructions?

slt $t0, $s0, $s1 # signed comparison
sltu $t1, $s0, $s1 # unsigned comparison

The value in register $s0 represents −1ten if it is an integer and 4,294,967,295ten 
if it is an unsigned integer. The value in register $s1 repre sents 1ten in either 
case. Then register $t0 has the value 1, since −1ten < 1ten, and register $t1 has 
the value 0, since 4,294,967,295ten > 1ten.

Treating signed numbers as if they were unsigned gives us a low cost way of 
checking if 0 ≤ x < y, which matches the index out-of-bounds check for arrays. The 
key is that negative integers in two’s complement notation look like large numbers 
in unsigned notation; that is, the most signifi cant bit is a sign bit in the former 
notation but a large part of the number in the latter. Thus, an unsigned comparison 
of x < y also checks if x is negative as well as if x is less than y.

Bounds Check Shortcut

Use this shortcut to reduce an index-out-of-bounds check: jump to 
IndexOutOfBounds if $s1 ≥ $t2 or if $s1 is negative. 

The checking code just uses sltu to do both checks:

sltu $t0,$s1,$t2 # $t0=0 if $s1>=length or $s1<0
beq  $t0,$zero,IndexOutOfBounds #if bad, goto Error

EXAMPLEEXAMPLE

ANSWERANSWER

EXAMPLEEXAMPLE

ANSWERANSWER
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Case/Switch Statement

Most programming languages have a case or switch statement that allows the pro-
grammer to select one of many alternatives depending on a single  value. The sim plest 
way to implement switch is via a sequence of conditional tests, turning the switch 
statement into a chain of if-then-else statements. 

Sometimes the alternatives may be more effi ciently encoded as a table of 
addresses of alternative instruction sequences, called a jump address table or jump 
table, and the program needs only to index into the table and then jump to the 
appropriate sequence. The jump table is then just an array of words containing 
addresses that correspond to labels in the code. The program loads the appropri ate 
entry from the jump table into a register. It then needs to jump using the address 
in the register. To support such situations, computers like MIPS include a jump 
register instruction (jr), meaning an unconditional jump to the address specifi ed 
in a register. Then it jumps to the proper address using this instruction, which is 
described in the next section. 

Although there are many statements for decisions and loops in programming 
lan guages like C and Java, the bedrock statement that implements them at the 
instruction set level is the conditional branch.

Elaboration: If you have heard about delayed branches, covered in Chapter 4, don’t 
worry: the MIPS assembler makes them invisible to the assembly language programmer. 

I. C has many statements for decisions and loops, while MIPS has few. Which of 
the following do or do not explain this imbalance? Why?

1. More decision statements make code easier to read and understand.

2. Fewer decision statements simplify the task of the underlying layer that is 
responsible for execution.

3. More decision statements mean fewer lines of code, which generally reduces 
coding time.

4. More decision statements mean fewer lines of code, which generally results 
in the execution of fewer operations.

jump address table 
Also called jump table. 
A table of  addresses of 
alternative instruction 
sequences.

jump address table 
Also called jump table. 
A table of  addresses of 
alternative instruction 
sequences.

Hardware/
Software
Interface

Hardware/
Software
Interface

Check 
Yourself
Check 
Yourself
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112 Chapter 2 Instructions: Language of the Computer

II. Why does C provide two sets of operators for AND (& and &&) and two sets of 
operators for OR (| and ||), while MIPS doesn’t?

1. Logical operations AND and OR implement & and |, while conditional 
branches implement && and ||.

2. The previous statement has it backwards: && and || correspond to logical 
operations, while & and | map to conditional branches.

3. They are redundant and mean the same thing: && and || are simply inher ited 
from the programming language B, the predecessor of C. 

 2.8  
Supporting Procedures in Computer 
Hardware

A procedure or function is one tool programmers use to structure pro grams, both 
to make them easier to understand and to allow code to be reused. Procedures 
allow the programmer to concentrate on just one portion of the task at a time; 
parameters act as an interface between the procedure and the rest of the program 
and data, since they can pass values and return results. We describe the equivalent 
to procedures in Java in Section 2.15 on the CD, but Java needs everything from a 
computer that C needs.

You can think of a procedure like a spy who leaves with a secret plan, acquires 
resources, performs the task, covers his or her tracks, and then returns to the point 
of origin with the desired result. Nothing else should be perturbed once the mission 
is complete. Moreover, a spy operates on only a “need to know” basis, so the spy 
can’t make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six 
steps:

1. Put parameters in a place where the procedure can access them.

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Put the result value in a place where the calling program can access it.

6. Return control to the point of origin, since a procedure can be called from 
several points in a program.

procedure A stored 
subroutine that performs 
a specifi c task based on 
the parameters with 
which it is  provided.

procedure A stored 
subroutine that performs 
a specifi c task based on 
the parameters with 
which it is  provided.
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As mentioned above, registers are the fastest place to hold data in a computer, 
so we want to use them as much as possible. MIPS software follows the following 
convention for procedure calling in allocating its 32 registers:

$a0−$a3: four argument registers in which to pass parameters

$v0−$v1: two value registers in which to return values

$ra: one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an 
instruction just for the procedures: it jumps to an address and simultaneously 
saves the address of the following instruction in register $ra. The jump-and-link 
instruction (jal) is simply written 

jal ProcedureAddress

The link portion of the name means that an address or link is formed that points to 
the calling site to allow the procedure to return to the proper address. This “link,” 
stored in register $ra (register 31), is called the return address. The return address 
is needed because the same procedure could be called from several parts of the 
program.

To support such situations, computers like MIPS use jump register instruc tion 
(jr), introduced above to help with case statements, meaning an uncondi tional 
jump to the address specifi ed in a register: 

jr $ra

Jump register instruction jumps to the address stored in register $ra—which is 
just what we want. Thus, the calling program, or caller, puts the parameter val ues 
in $a0−$a3 and uses jal X to jump to procedure X (sometimes named the callee). 
The callee then performs the calculations, places the results in $v0 and $v1, and 
returns control to the caller using jr $ra.

Implicit in the stored-program idea is the need to have a register to hold the 
address of the current instruction being executed. For historical reasons, this reg-
ister is almost always called the program counter, abbreviated PC in the MIPS 
architecture, although a more sensible name would have been instruction  address 
register. The jal instruction actually saves PC + 4 in register $ra to link to the 
following instruction to set up the procedure return. 

■

■

■

jump-and-link 
instruction An 
instruction that jumps 
to an address and 
simultaneously saves the 
address of the following 
instruction in a register 
($ra in MIPS).

return address A link to 
the calling site that allows 
a proce dure to return 
to the proper address; 
in MIPS it is stored in 
register $ra.

caller The program that 
insti gates a procedure and 
 provides the necessary 
parameter values.

callee A procedure that 
executes a series of stored 
 instructions based on 
parameters provided by 
the caller and then returns 
con trol to the caller.

program counter 
(PC) The register 
containing the  address of 
the instruction in the pro-
gram being  executed.

jump-and-link 
instruction An 
instruction that jumps 
to an address and 
simultaneously saves the 
address of the following 
instruction in a register 
($ra in MIPS).

return address A link to 
the calling site that allows 
a proce dure to return 
to the proper address; 
in MIPS it is stored in 
register $ra.

caller The program that 
insti gates a procedure and 
 provides the necessary 
parameter values.

callee A procedure that 
executes a series of stored 
 instructions based on 
parameters provided by 
the caller and then returns 
con trol to the caller.

program counter 
(PC) The register 
containing the  address of 
the instruction in the pro-
gram being  executed.
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114 Chapter 2 Instructions: Language of the Computer

Using More Registers

Suppose a compiler needs more registers for a procedure than the four argument 
and two return value registers. Since we must cover our tracks after our mission 
is complete, any registers needed by the caller must be restored to the values that 
they contained before the procedure was invoked. This situation is an example in 
which we need to spill registers to memory, as mentioned in the Hardware/ Software 
Interface section.

The ideal data structure for spilling registers is a stack—a last-in-fi rst-out 
queue. A stack needs a pointer to the most recently allocated address in the stack 
to show where the next procedure should place the registers to be spilled or where 
old register values are found. The stack pointer is adjusted by one word for each 
register that is saved or restored. MIPS software reserves register 29 for the stack 
pointer, giving it the obvious name $sp. Stacks are so popular that they have their 
own buzzwords for transferring data to and from the stack: placing data onto the 
stack is called a push, and removing data from the stack is called a pop.

By historical precedent, stacks “grow” from higher addresses to lower addresses. 
This convention means that you push values onto the stack by sub tracting from 
the stack  pointer. Adding to the stack pointer shrinks the stack, thereby popping 
values off the stack.

Compiling a C Procedure That Doesn’t Call Another Procedure

Let’s turn the example on page 79 from Section 2.2 into a C procedure:

int leaf_example (int g, int h, int i, int j)
{
 int f;

 f = (g + h) – (i + j);
 return f;
}

What is the compiled MIPS assembly code?

The parameter variables g, h, i, and j correspond to the argument registers 
$a0, $a1, $a2, and $a3, and f corresponds to $s0. The compiled program 
starts with the label of the procedure:

leaf_example:

stack A data structure 
for spill ing registers 
organized as a last-in-
fi rst-out queue.

stack pointer A value 
denoting the most 
recently allocated address 
in a stack that shows 
where registers should 
be spilled or where old 
register values can be 
found. In MIPS, it is 
register $sp.

push Add element to 
stack.

pop Remove element 
from stack.

stack A data structure 
for spill ing registers 
organized as a last-in-
fi rst-out queue.

stack pointer A value 
denoting the most 
recently allocated address 
in a stack that shows 
where registers should 
be spilled or where old 
register values can be 
found. In MIPS, it is 
register $sp.

push Add element to 
stack.

pop Remove element 
from stack.

EXAMPLEEXAMPLE

ANSWERANSWER
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The next step is to save the registers used by the procedure. The C assignment 
statement in the procedure body is identical to the example on page 79, which 
uses two temporary registers. Thus, we need to save three  registers: $s0, $t0, 
and $t1. We “push” the old values onto the stack by creating space for three 
words (12 bytes) on the stack and then store them:

addi $sp, $sp, –12 # adjust stack to make room for 3 items
sw  $t1, 8($sp) # save register $t1 for use afterwards
sw  $t0, 4($sp) # save register $t0 for use afterwards
sw  $s0, 0($sp) # save register $s0 for use afterwards

Figure 2.10 shows the stack before, during, and after the procedure call. 
The next three statements correspond to the body of the procedure, which 

follows the example on page 79:

add $t0,$a0,$a1 # register $t0 contains g + h
add $t1,$a2,$a3 # register $t1 contains i + j
sub  $s0, $t0,  $t1 # f = $t0 – $t1, which is (g + h)–(i + j)

To return the value of f, we copy it into a return value register:

add $v0,$s0,$zero # returns f ($v0 = $s0 + 0)

Before returning, we restore the three old values of the registers we saved by 
“popping” them from the stack:

lw  $s0, 0($sp) # restore register $s0 for caller
lw  $t0, 4($sp) # restore register $t0 for caller
lw  $t1, 8($sp) # restore register $t1 for caller
addi $sp,$sp,12 # adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

jr  $ra       # jump back to calling routine

In the previous example, we used temporary registers and assumed their old 
values must be saved and restored. To avoid saving and restoring a register whose 
value is never used, which might happen with a temporary register, MIPS software 
sepa rates 18 of the registers into two groups:

$t0−$t9:ten temporary registers that are not preserved by the callee (called 
procedure) on a procedure call

$s0−$s7:eight saved registers that must be preserved on a procedure call (if 
used, the callee saves and restores them)

This simple convention reduces register spilling. In the example above, since the 
caller does not expect registers $t0 and $t1 to be preserved across a procedure call, 

■

■

 2.8 Supporting Procedures in Computer Hardware 115

03-Ch02-P374493.indd   11503-Ch02-P374493.indd   115 9/30/08   3:23:03 PM9/30/08   3:23:03 PM



116 Chapter 2 Instructions: Language of the Computer

we can drop two stores and two loads from the code. We still must save and restore 
$s0, since the callee must assume that the caller needs its value. 

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c) 
after the procedure call. The stack pointer always points to the “top” of the stack, or the last word in 
the stack in this drawing. 

High address

Low address

Contents of register $t1

Contents of register $t0

Contents of register $s0

$sp

$sp

$sp

a. b. c.

Nested Procedures

Procedures that do not call others are called leaf procedures. Life would be simple if 
all procedures were leaf procedures, but they aren’t. Just as a spy might employ other 
spies as part of a mission, who in turn might use even more spies, so do procedures 
invoke other procedures. Moreover, recursive procedures even invoke “clones” of 
themselves. Just as we need to be careful when using registers in procedures, more 
care must also be taken when invok ing nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument 
of 3, by placing the value 3 into register $a0 and then using jal A. Then suppose 
that procedure A calls procedure B via jal B with an argument of 7, also placed in 
$a0. Since A hasn’t fi nished its task yet, there is a confl ict over the use of register 
$a0. Similarly, there is a confl ict over the return address in register $ra, since it 
now has the return address for B. Unless we take steps to prevent the problem, this 
confl ict will eliminate procedure A’s ability to return to its caller.

One solution is to push all the other registers that must be preserved onto 
the stack, just as we did with the saved registers. The caller pushes any argument 
registers ($a0−$a3) or temporary registers ($t0−$t9) that are needed after 
the call. The callee pushes the return address register $ra and any saved registers 
($s0−$s7) used by the callee. The stack pointer $sp is adjusted to account for the 
num ber of registers placed on the stack. Upon the return, the registers are restored 
from memory and the stack pointer is readjusted.
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Compiling a Recursive C Procedure, Showing Nested Procedure 
 Linking

Let’s tackle a recursive procedure that calculates factorial:

int fact (int n)
{
 if (n < 1) return (1); 
 else return (n * fact(n – 1));
}

What is the MIPS assembly code?

The parameter variable n corresponds to the argument register $a0. The 
compiled program starts with the label of the procedure and then saves two 
registers on the stack, the return address and $a0:

fact:
 addi $sp, $sp, –8 # adjust stack for 2 items
 sw $ra, 4($sp) # save the return address
 sw $a0, 0($sp) # save the argument n

The fi rst time fact is called, sw saves an address in the program that called 
fact. The next two instructions test whether n is less than 1, going to L1 if 
n ≥ 1.

 slti $t0,$a0,1 # test for n < 1
 beq $t0,$zero,L1 # if n >= 1, go to L1

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1 to 
0 and places that sum in $v0. It then pops the two saved values off the stack 
and jumps to the return address:

 addi $v0,$zero,1 # return 1
 addi $sp,$sp,8 # pop 2 items off stack
 jr $ra # return to caller

Before popping two items off the stack, we could have loaded $a0 and $ra. Since 
$a0 and $ra don’t change when n is less than 1, we skip those instructions. 

If n is not less than 1, the argument n is decremented and then fact is 
called again with the decremented value:

L1: addi $a0,$a0,–1   # n >= 1: argument gets (n – 1)
 jal  fact         # call fact with (n – 1)

EXAMPLEEXAMPLE

ANSWERANSWER
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118 Chapter 2 Instructions: Language of the Computer

The next instruction is where fact returns. Now the old return address and 
old argument are restored, along with the stack pointer:

lw $a0, 0($sp) # return from jal: restore argument n
lw $ra, 4($sp) # restore the return address
addi $sp, $sp, 8 # adjust stack pointer to pop 2 items

Next, the value register $v0 gets the product of old argument $a0 and the 
current value of the value register. We assume a multiply instruction is avail-
able, even though it is not covered until Chapter 3:

 mul $v0,$a0,$v0 # return n * fact (n – 1)

Finally, fact jumps again to the return address:

jr $ra # return to the caller

A C variable is generally a location in storage, and its interpretation depends both on 
its type and storage class. Examples include integers and characters (see Section 2.9). 
C has two storage classes: automatic and static. Automatic variables are local to a 
procedure and are discarded when the procedure exits. Static variables exist across 
exits from and entries to procedures. C variables declared outside all procedures 
are considered static, as are any variables de clared using the keyword static. The 
rest are automatic. To simplify access to static data, MIPS software reserves another 
reg ister, called the global pointer, or $gp.

Figure 2.11 summarizes what is preserved across a procedure call. Note that sev-
eral schemes preserve the stack, guaranteeing that the caller will get the same data 
back on a load from the stack as it stored onto the stack. The stack above $sp is 
pre served simply by making sure the callee does not write above $sp; $sp is itself 
pre served by the callee adding exactly the same amount that was subtracted from it; 
and the other registers are preserved by saving them on the stack (if they are used) 
and restoring them from there.

Hardware/
Software
Interface

Hardware/
Software
Interface

global pointer The 
register that is reserved to 
point to the static area.

global pointer The 
register that is reserved to 
point to the static area.

FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies 
on the frame pointer register or on the global pointer register, discussed in the following subsec tions, they 
are also preserved. 

Preserved Not preserved

Saved registers: $s0–$s7 Temporary registers: $t0–$t9

Stack pointer register: $sp Argument registers: $a0–$a3 

Return address register: $ra Return value registers: $v0–$v1

Stack above the stack pointer Stack below the stack pointer
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Allocating Space for New Data on the Stack
The fi nal complexity is that the stack is also used to store variables that are local 
to the procedure but do not fi t in registers, such as local arrays or structures. The 
segment of the stack containing a procedure’s saved registers and local variables is 
called a procedure frame or activation record. Figure 2.12 shows the state of the 
stack before, during, and after the procedure call.

Some MIPS software uses a frame pointer ($fp) to point to the fi rst word of 
the frame of a procedure. A stack pointer might change during the procedure, and 
so references to a local variable in memory might have different offsets depending 
on where they are in the procedure, making the procedure harder to understand. 
Alternatively, a frame pointer offers a stable base register within a procedure for 
local memory-references. Note that an activation record appears on the stack 
whether or not an explicit frame pointer is used. We’ve been avoiding using $fp by 
avoiding changes to $sp within a procedure: in our examples, the stack is adjusted 
only on entry and exit of the procedure. 

procedure frame Also 
called activation record. 
The  segment of the stack 
containing a proce dure’s 
saved registers and local 
variables.

frame pointer A value 
denot ing the location of 
the saved registers and 
local variables for a given 
procedure.

procedure frame Also 
called activation record. 
The  segment of the stack 
containing a proce dure’s 
saved registers and local 
variables.

frame pointer A value 
denot ing the location of 
the saved registers and 
local variables for a given 
procedure.

FIGURE 2.12 Illustration of the stack allocation (a) before, (b) during, and (c) after the 
procedure call. The frame pointer ($fp) points to the fi rst word of the frame, often a saved argument 
register, and the stack pointer ($sp) points to the top of the stack. The stack is adjusted to make room for 
all the saved registers and any memory-resident local variables. Since the stack pointer may change during 
pro gram execution, it’s easier for programmers to reference variables via the stable frame pointer, although it 
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the 
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a 
frame pointer is used, it is initialized using the address in $sp on a call, and $sp is restored using $fp. This 
information is also found in Column 4 of the MIPS Reference Data Card at the front of this book. 

High address

Low address
a. b. c.

Saved argument
registers (if any)

$sp

$sp

$sp

$fp

$fp

$fp

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)
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120 Chapter 2 Instructions: Language of the Computer

Allocating Space for New Data on the Heap
In addition to automatic variables that are local to procedures, C programmers need 
space in memory for static variables and for dynamic data structures.  Figure 2.13 
shows the MIPS convention for allocation of memory. The stack starts in the 
high end of memory and grows down. The fi rst part of the low end of memory is 
reserved, followed by the home of the MIPS machine code, traditionally called the 
text segment. Above the code is the static data segment, which is the place for con-
stants and other static variables. Although arrays tend to be a fi xed length and thus 
are a good match to the static data segment, data structures like linked lists tend to 
grow and shrink during their lifetimes. The segment for such data structures is tra-
ditionally called the heap, and it is placed next in memory. Note that this allocation 
allows the stack and heap to grow toward each other, thereby allowing the effi cient 
use of memory as the two seg ments wax and wane.

text segment The 
segment of a UNIX object 
fi le that  contains the 
machine language code 
for rou tines in the source 
fi le.

text segment The 
segment of a UNIX object 
fi le that  contains the 
machine language code 
for rou tines in the source 
fi le.

FIGURE 2.13 The MIPS memory allocation for program and data. These addresses are 
only a software convention, and not part of the MIPS architecture. The stack pointer is initialized to 
7fff fffchex and grows down toward the data segment. At the other end, the program code (“text”) starts 
at 0040 0000hex. The static data starts at 1000 0000hex. Dynamic data, allocated by malloc in C and 
by new in Java, is next. It grows up toward the stack in an area called the heap. The global pointer, $gp, is 
set to an address to make it easy to access data. It is initialized to 1000 8000hex so that it can access from 
1000 0000hex to 1000 ffffhex using the positive and negative 16-bit offsets from $gp. This information 
is also found in Column 4 of the MIPS Reference Data Card at the front of this book. 

Stack

Dynamic data

Static data

Text

Reserved

$sp 7fff fffchex 

$gp 1000 8000hex 
1000 0000hex 

pc 0040 0000hex 

0 

C allocates and frees space on the heap with explicit functions. malloc()  allo-
cates space on the heap and returns a pointer to it, and free() releases space on 
the heap to which the pointer points. Memory allocation is controlled by programs 
in C, and it is the source of many common and diffi cult bugs. Forgetting to free space 
leads to a “memory leak,” which eventually uses up so much memory that the oper-
ating system may crash. Freeing space too early leads to “dangling pointers,” which 
can cause pointers to point to things that the program never intended. Java uses 
automatic memory allocation and garbage collection just to avoid such bugs.
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Figure 2.14 summarizes the register conventions for the MIPS assembly l anguage.

Name Register number Usage
Preserved on 

call?

$zero 0 The constant value 0 n.a.

$v0–$v1 2–3 Values for results and expression evaluation no

$a0–$a3 4–7 Arguments no

$t0–$t7 8–15 Temporaries no

$s0–$s7 16–23 Saved yes

$t8–$t9 24–25 More temporaries no

$gp 28 Global pointer yes

$sp 29 Stack pointer yes

$fp 30 Frame pointer yes

$ra 31 Return address yes

FIGURE 2.14 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see 
Section 2.12), and registers 26−27, called $k0−$k1, are reserved for the operating system. This information 
is also found in Column 2 of the MIPS Reference Data Card at the front of this book.

Elaboration: What if there are more than four parameters? The MIPS convention is 
to place the extra parameters on the stack just above the frame pointer. The procedure 
then expects the fi rst four parameters to be in registers $a0 through $a3 and the rest 
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because all 
ref erences to variables in the stack within a procedure will have the same offset. The frame 
pointer is not necessary, however. The GNU MIPS C compiler uses a frame pointer, but the 
C compiler from MIPS does not; it treats register 30 as another save register ($s8).

Elaboration: Some recursive procedures can be implemented iteratively without using 
recursion. Iteration can signifi cantly improve performance by removing the overhead associ-
ated with procedure calls. For example, consider a procedure used to accumulate a sum:

int sum (int n, int acc) {
 if (n > 0)
  return sum(n – 1, acc + n);
 else
  return acc;
}

Consider the procedure call sum(3,0). This will result in recursive calls to 
sum(2,3), sum(1,5), and sum(0,6), and then the result 6 will be returned four 
times. This recursive call of sum is referred to as a tail call, and this example use of tail 
recursion can be imple mented very effi ciently (assume $a0 = n and $a1 = acc):

sum: slti$a0,1 # test if n <= 0
 beq$a0, $zero, sum_exit  # go to sum_exit if n <= 0
 add$a1, $a1, $a0 # add n to acc

 2.8 Supporting Procedures in Computer Hardware 121
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122 Chapter 2 Instructions: Language of the Computer

 addi$a0, $a0, –1 # subtract 1 from n
 j sum  # go to sum
sum_exit:
 add$v0, $a1, $zero # return value acc
 jr $ra # return to caller

Which of the following statements about C and Java are generally true?

1. C programmers manage data explicitly, while it’s automatic in Java.

2. C leads to more pointer bugs and memory leak bugs than does Java.

 2.9 Communicating with People

Computers were invented to crunch numbers, but as soon as they became com-
mercially viable they were used to process text. Most computers today offer 8-bit 
bytes to represent characters, with the American Standard Code for Informa-
tion Interchange (ASCII) being the representation that nearly everyone follows. 
Figure 2.15 summarizes ASCII.    

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

32  space 48 0 64 @ 80 P 096 ` 112 p

33 ! 49 1 65 A 81 Q 097 a 113 q

34 " 50 2 66 B 82 R 098 b 114 r

35 # 51 3 67 C 83 S 099 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 ( 56 8 72 H 88 X 104 h 120 x

41 ) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [ 107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93 ] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 DEL

FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can lead 
to short cuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a backspace, 
9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses to mark the 
end of a string. This information is also found in Column 3 of the MIPS Reference Data Card at the front of this book. 

Check 
Yourself

Check 
Yourself

!(@ | = > (wow open 
tab at bar is great)

Fourth line of the 
keyboard poem “Hatless 
Atlas,” 1991 (some 
give names to ASCII 
characters: “!” is “wow,” 
“(” is open, “|” is bar, and 
so on).

!(@ | = > (wow open 
tab at bar is great)

Fourth line of the 
keyboard poem “Hatless 
Atlas,” 1991 (some 
give names to ASCII 
characters: “!” is “wow,” 
“(” is open, “|” is bar, and 
so on).

03-Ch02-P374493.indd   12203-Ch02-P374493.indd   122 9/30/08   3:23:07 PM9/30/08   3:23:07 PM



Base 2 is not natural to human beings; we have 10 fi ngers and so fi nd base 
10 natural. Why didn’t computers use decimal? In fact, the fi rst commercial 
computer did offer decimal arithmetic. The problem was that the computer still 
used on and off signals, so a decimal digit was simply represented by several 
binary digits. Decimal proved so ineffi cient that subsequent computers reverted 
to all binary, con verting to base 10 only for the relatively infrequent input/output 
events.

ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers. 
How much does storage increase if the number 1 billion is represented in 
ASCII versus a 32-bit integer?

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long. 
Thus the storage expansion would be (10 × 8)/32 or 2.5. In addition to the 
expansion in storage, the hardware to add, subtract, multiply, and divide such 
decimal numbers is diffi cult. Such diffi culties explain why computing profes-
sionals are raised to believe that binary is natural and that the occasional dec-
imal computer is bizarre.

A series of instructions can extract a byte from a word, so load word and store 
word are suffi cient for transferring bytes as well as words. Because of the popularity 
of text in some programs, however, MIPS provides instructions to move bytes. Load 
byte (lb) loads a byte from memory, placing it in the rightmost 8 bits of a register. 
Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to 
memory. Thus, we copy a byte with the sequence

lb $t0,0($sp)  # Read byte from source
sb $t0,0($gp)  # Write byte to destination

Hardware/ 
Software 
Interface

Hardware/ 
Software 
Interface

EXAMPLEEXAMPLE

ANSWERANSWER
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124 Chapter 2 Instructions: Language of the Computer

Signed versus unsigned applies to loads as well as to arithmetic. The function of 
a signed load is to copy the sign repeatedly to fi ll the rest of the register—called 
sign extension—but its purpose is to place a correct representation of the number 
within that register. Unsigned loads simply fi ll with 0s to the left of the data, since 
the number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and 
unsigned loads are identical. MIPS does offer two fl avors of byte loads: load byte 
(lb) treats the byte as a signed number and thus sign-extends to fi ll the 24 left-
most bits of the register, while load byte unsigned (lbu) works with unsigned 
inte gers. Since C programs almost always use bytes to represent characters rather 
than consider bytes as very short signed integers, lbu is used practically exclusively 
for byte loads. 

Characters are normally combined into strings, which have a variable number 
of characters. There are three choices for representing a string: (1) the fi rst posi tion 
of the string is reserved to give the length of a string, (2) an accompanying variable 
has the length of the string (as in a structure), or (3) the last position of a string is 
indicated by a character used to mark the end of a string. C uses the third choice, 
terminating a string with a byte whose value is 0 (named null in ASCII). Thus, 
the string “Cal” is represented in C by the following 4 bytes, shown as deci mal 
numbers: 67, 97, 108, 0. (As we shall see, Java uses the fi rst option.) 

Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure strcpy copies string y to string x using the null byte 
 termination convention of C:

void strcpy (char x[], char y[])
{
 int i;

 i = 0;
 while ((x[i] = y[i]) != ‘\0’) /* copy & test byte */
   i += 1;
}

What is the MIPS assembly code?

Hardware/ 
Software 
Interface

Hardware/ 
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Interface

EXAMPLEEXAMPLE
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Below is the basic MIPS assembly code segment. Assume that base addresses 
for arrays x and y are found in $a0 and $a1, while i is in $s0. strcpy adjusts 
the stack pointer and then saves the saved register $s0 on the stack:

strcpy:
 addi $sp,$sp,–4 # adjust stack for 1 more item
 sw $s0, 0($sp) # save $s0 

To initialize i to 0, the next instruction sets $s0 to 0 by adding 0 to 0 and plac-
ing that sum in $s0:

 add $s0,$zero,$zero # i = 0 + 0

This is the beginning of the loop. The address of y[i] is fi rst formed by add-
ing i to y[]:

L1: add $t1,$s0,$a1 # address of y[i] in $t1

Note that we don’t have to multiply i by 4 since y is an array of bytes and not 
of words, as in prior examples.

To load the character in y[i], we use load byte unsigned, which puts the 
character into $t2:

 lbu $t2, 0($t1) # $t2 = y[i]

A similar address calculation puts the address of x[i] in $t3, and then the 
character in $t2 is stored at that address. 

 add $t3,$s0,$a0 # address of x[i] in $t3
 sb $t2, 0($t3) # x[i] = y[i]

Next, we exit the loop if the character was 0. That is, we exit if it is the last 
character of the string:

 beq $t2,$zero,L2 # if y[i] == 0, go to L2

If not, we increment i and loop back:

 addi $s0, $s0,1 # i = i + 1
 j L1  # go to L1

ANSWERANSWER
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126 Chapter 2 Instructions: Language of the Computer

If we don’t loop back, it was the last character of the string; we restore $s0 and 
the stack pointer, and then return.

L2: lw $s0, 0($sp) # y[i] == 0: end of string. Re-
store old $s0

 addi $sp,$sp,4 # pop 1 word off stack
 jr $ra # return

String copies usually use pointers instead of arrays in C to avoid the opera tions 
on i in the code above. See Section 2.14 for an explanation of arrays versus 
pointers.

Since the procedure strcpy above is a leaf procedure, the compiler could allo-
cate i to a temporary register and avoid saving and restoring $s0. Hence, instead 
of thinking of the $t registers as being just for temporaries, we can think of them as 
registers that the callee should use whenever convenient. When a compiler fi nds a leaf 
procedure, it exhausts all temporary registers before using registers it must save.

Characters and Strings in Java

Unicode is a universal encoding of the alphabets of most human languages. 
Figure 2.16 is a list of Unicode alphabets; there are almost as many alphabets in 
Unicode as there are useful symbols in ASCII. To be more inclusive, Java uses 
Unicode for characters. By default, it uses 16 bits to represent a character.

The MIPS instruction set has explicit instructions to load and store such 16-bit 
quantities, called halfwords. Load half (lh) loads a halfword from memory, placing 
it in the rightmost 16 bits of a register. Like load byte, load half (lh) treats the 
halfword as a signed number and thus sign-extends to fi ll the 16 leftmost bits of the 
register, while load halfword unsigned (lhu) works with unsigned integers. Thus, 
lhu is the more popular of the two. Store half (sh) takes a halfword from the 
rightmost 16 bits of a register and writes it to memory. We copy a halfword with 
the sequence

lhu $t0,0($sp) # Read halfword (16 bits) from source
sh $t0,0($gp) # Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefi ned 
methods for concatenation, comparison, and conversion. Unlike C, Java includes a 
word that gives the length of the string, similar to Java arrays.

Elaboration: MIPS software tries to keep the stack aligned to word addresses, allowing 
the program to always use lw and sw (which must be aligned) to access the stack. This 
convention means that a char variable allocated on the stack occupies 4 bytes, even 
though it needs less. However, a C string variable or an array of bytes will pack 4 bytes per 
word, and a Java string vari able or array of shorts packs 2 halfwords per word.
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Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifi er Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unifi ed Canadian 
Aboriginal Syllabic

Shavian Optical Character Recognition

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,” 
which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 
0370hex, and Cyrillic at 0400hex. The fi rst three columns show 48 blocks that correspond to human languages 
in roughly Unicode numerical order. The last column has 16 blocks that are multilingual and are not in order. 
A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII 
subset as eight bits and uses 16−32 bits for the other characters. UTF-32 uses 32 bits per character. To learn 
more, see www.unicode.org. 

I. Which of the following statements about characters and strings in C and Java 
are true?

1. A string in C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of characters 
in C and Java.

3. Strings in C and Java use null (0) to mark the end of a string.

4. Operations on strings, like length, are faster in C than in Java.

II. Which type of variable that can contain 1,000,000,000ten takes the most mem ory 
space?

1. int in C

2. string in C

3. string in Java  

Check 
Yourself
Check 
Yourself
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128 Chapter 2 Instructions: Language of the Computer

  2.10  
MIPS Addressing for 32-Bit Immediates 
and Addresses

Although keeping all MIPS instructions 32 bits long simplifi es the hardware, there 
are times where it would be convenient to have a 32-bit constant or 32-bit address. 
This section starts with the general solution for large constants, and then shows the 
optimizations for instruction addresses used in branches and jumps.

32-Bit Immediate Operands

Although constants are frequently short and fi t into the 16-bit fi eld, sometimes they 
are bigger. The MIPS instruction set includes the instruction load upper immediate 
(lui) specifi cally to set the upper 16 bits of a constant in a register, allowing a 
subsequent instruction to specify the lower 16 bits of the constant. Fig ure 2.17 
shows the operation of lui.

Loading a 32-Bit Constant

What is the MIPS assembly code to load this 32-bit constant into register $s0?

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using lui:

lui $s0, 61   # 61 decimal = 0000 0000 0011 1101 binary

The value of register $s0 afterward is

0000 0000 0011 1101 0000 0000 0000 0000

The next step is to insert the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000 

The fi nal value in register $s0 is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

EXAMPLEEXAMPLE

ANSWERANSWER
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The machine language version of lui $t0, 255   # $t0 is register 8:
001111 00000 01000 0000 0000 1111 1111

Contents of register $t0 after executing lui $t0, 255:
0000 0000 1111 1111 0000 0000 0000 0000

FIGURE 2.17 The effect of the lui instruction. The instruction lui transfers the 16-bit immediate constant fi eld value into the 
leftmost 16 bits of the register, fi lling the lower 16 bits with 0s. 

Either the compiler or the assembler must break large constants into pieces and 
then reassemble them into a register. As you might expect, the immediate fi eld’s 
size restriction may be a problem for memory addresses in loads and stores as well 
as for constants in immediate instructions. If this job falls to the assembler, as it 
does for MIPS software, then the assembler must have a temporary register avail-
able in which to create the long values. This is a reason for the register $at, which 
is reserved for the assembler. 

Hence, the symbolic representation of the MIPS machine language is no longer 
limited by the hardware, but by whatever the creator of an assembler chooses to include 
(see Section 2.12). We stick close to the hardware to explain the architecture of the 
computer, noting when we use the enhanced language of the assembler that is not 
found in the processor.

Elaboration: Creating 32-bit constants needs care. The instruction addi copies the 
left most bit of the 16-bit immediate fi eld of the instruction into the upper 16 bits of a 
word. Logical or immediate from Section 2.6 loads 0s into the upper 16 bits and hence 
is used by the assem bler in conjunction with lui to create 32-bit constants.

Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the fi nal MIPS 
instruction format, called the J-type, which consists of 6 bits for the opera tion fi eld 
and the rest of the bits for the address fi eld. Thus,

j 10000  # go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we 
will see):
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130 Chapter 2 Instructions: Language of the Computer

2 10000

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction, the conditional branch instruction must specify 

two operands in addition to the branch address. Thus,

bne  $s0,$s1,Exit   # go to Exit if $s0 ≠ $s1

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits

If addresses of the program had to fi t in this 16-bit fi eld, it would mean that 
no program could be bigger than 216, which is far too small to be a realistic  option 
today. An alternative would be to specify a register that would always be added to 
the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 232 and still be able to use condi tional 
branches, solving the branch address size problem. Then the question is, which 
register?

The answer comes from seeing how conditional branches are used. Conditional 
branches are found in loops and in if statements, so they tend to branch to a 
nearby instruction. For example, about half of all conditional branches in SPEC 
benchmarks go to locations less than 16 instructions away. Since the program 
counter (PC) contains the address of the current instruction, we can branch within 
± 215 words of the current instruction if we use the PC as the register to be added 
to the address. Almost all loops and if statements are much smaller than 216 words, 
so the PC is the ideal choice. 

This form of branch addressing is called PC-relative addressing. As we shall see 
in Chapter 4, it is convenient for the hardware to increment the PC early to point to 
the next instruction. Hence, the MIPS address is actually relative to the address of 
the following instruction (PC + 4) as opposed to the current instruction (PC). 

 Like most recent computers, MIPS uses PC-relative addressing for all condi-
tional branches, because the destination of these instructions is likely to be close to 
the branch. On the other hand, jump-and-link instructions invoke procedures that 
have no reason to be near the call, so they normally use other forms of addressing. 
Hence, the MIPS architecture offers long addresses for procedure calls by using the 
J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the 
branch by having PC-relative addressing refer to the number of words to the next 
instruction instead of the number of bytes. Thus, the 16-bit fi eld can branch four 

PC-relative addressing 
An addressing regime 
in which the address is 
the sum of the pro gram 
counter (PC) and a con-
stant in the instruction.

PC-relative addressing 
An addressing regime 
in which the address is 
the sum of the pro gram 
counter (PC) and a con-
stant in the instruction.
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times as far by interpreting the fi eld as a relative word address rather than as a 
rel ative byte address. Similarly, the 26-bit fi eld in jump instructions is also a word 
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else for 
jumps. The MIPS jump instruction replaces only the lower 28 bits of the PC, leaving 
the upper 4 bits of the PC unchanged. The loader and linker (Section 2.12) must be 
careful to avoid placing a program across an address boundary of 256 MB (64 million 
instructions); otherwise, a jump must be replaced by a jump register instruction preceded 
by other instructions to load the full 32-bit address into a register.

Showing Branch Offset in Machine Language

The while loop on page 107–108 was compiled into this MIPS assembler code:

Loop:sll    $t1,$s3,2 # Temp reg $t1 = 4 * i
 add $t1,$t1,$s6 # $t1 = address of save[i]
 lw  $t0,0($t1) # Temp reg $t0 = save[i]
 bne $t0,$s5, Exit # go to Exit if save[i] ≠ k
 addi $s3,$s3,1 # i = i + 1
 j   Loop # go to Loop
Exit:

If we assume we place the loop starting at location 80000 in memory, what is 
the MIPS machine code for this loop?

The assembled instructions and their addresses are:

EXAMPLEEXAMPLE

ANSWERANSWER

80000 0 0 19 9 2 0

80004 0 9 22 9 0 32

80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 20000

80024 . . .

 2.10 MIPS Addressing for 32-Bit Immediates and Addresses 131

03-Ch02-P374493.indd   13103-Ch02-P374493.indd   131 9/30/08   3:23:12 PM9/30/08   3:23:12 PM



132 Chapter 2 Instructions: Language of the Computer

Remember that MIPS instructions have byte addresses, so addresses of 
se quential words differ by 4, the number of bytes in a word. The bne instruc-
tion on the fourth line adds 2 words or 8 bytes to the address of the following 
instruction (80016), specifying the branch destination relative to that follow ing 
instruction (8 + 80016) instead of relative to the branch instruction (12 + 80012) 
or using the full destination address (80024). The jump instruction on the last 
line does use the full address (20000 × 4 = 80000), corresponding to the label 
Loop.

Most conditional branches are to a nearby location, but occasionally they branch 
far away, farther than can be represented in the 16 bits of the conditional branch 
instruction. The assembler comes to the rescue just as it did with large addresses 
or constants: it inserts an unconditional jump to the branch target, and inverts the 
condition so that the branch decides whether to skip the jump.

Branching Far Away

Given a branch on register $s0 being equal to register $s1, 

 beq $s0, $s1, L1

replace it by a pair of instructions that offers a much greater branching distance.

These instructions replace the short-address conditional branch:

 bne $s0, $s1, L2
 j L1
L2:

MIPS Addressing Mode Summary

Multiple forms of addressing are generically called addressing modes. Figure 2.18 
shows how operands are identifi ed for each addressing mode.  The MIPS address-
ing modes are the following:

1. Immediate addressing, where the operand is a constant within the instruc-
tion itself

2. Register addressing, where the operand is a register
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Hardware/
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Interface

EXAMPLEEXAMPLE

ANSWERANSWER

addressing mode One of 
sev eral addressing regimes 
 delimited by their varied 
use of operands and/or 
 addresses.

addressing mode One of 
sev eral addressing regimes 
 delimited by their varied 
use of operands and/or 
 addresses.
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3. Base or displacement addressing, where the operand is at the memory loca-
tion whose address is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a 
con stant in the instruction 

5. Pseudodirect addressing, where the jump address is the 26 bits of the instruc-
tion concatenated with the upper bits of the PC

FIGURE 2.18 Illustration of the fi ve MIPS addressing modes. The operands are shaded in color. 
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load 
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes 
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and 
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC. 

1.  Immediate addressing

2. Register addressing

3.  Base addressing

4.  PC-relative addressing

5.  Pseudodirect addressing

Immediateop rs rt

op rs rt . . . functrd

Register

Registers

op rs rt Address

Word

Memory

+Register HalfwordByte

op rs rt Address

Word

Memory

+PC

op

Word

Memory

PC

Address
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134 Chapter 2 Instructions: Language of the Computer

Although we show MIPS as having 32-bit addresses, nearly all microprocessors 
(including MIPS) have 64-bit address extensions (see  Appendix E). These exten-
sions were in response to the needs of software for larger programs. The process of 
instruction set extension allows architectures to expand in such a way that is able to 
move software compatibly upward to the next generation of architecture. 

Note that a single operation can use more than one addressing mode. Add, for 
example, uses both immediate (addi) and register (add) addressing.  

Decoding Machine Language
Sometimes you are forced to reverse-engineer machine language to create the origi-
nal assembly language. One example is when looking at “core dump.” Figure 2.19 
shows the MIPS encoding of the fi elds for the MIPS machine language. This fi gure 
helps when translating by hand between assembly language and machine language.

Decoding Machine Code 

What is the assembly language statement corresponding to this machine 
instruction?

 00af8020hex

The fi rst step in converting hexadecimal to binary is to fi nd the op fi elds: 

(Bits: 31 28 26 5 2 0)
 0000 0000 1010 1111 1000 0000 0010 0000

We look at the op fi eld to determine the operation. Referring to Figure 2.19, 
when bits 31−29 are 000 and bits 28−26 are 000, it is an  R-format instruction. 
Let’s reformat the binary instruction into R-format fi elds, listed in Figure 2.20:

op rs rt rd shamt funct
000000 00101 01111 10000 00000 100000

The bottom portion of Figure 2.19 determines the operation of an R-format 
instruction. In this case, bits 5−3 are 100 and bits 2−0 are 000, which means 
this binary pattern represents an add instruction. 

We decode the rest of the instruction by looking at the fi eld values. The 
decimal values are 5 for the rs fi eld, 15 for rt, and 16 for rd (shamt is unused). 
Figure 2.14 shows that these numbers represent registers $a1, $t7, and $s0. 
Now we can reveal the assembly instruction:

add $s0,$a1,$t7

EXAMPLEEXAMPLE

ANSWERANSWER

Hardware/
Software
Interface
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op(31:26)

28–26

31–29

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) R-format Bltz/gez jump jump & link branch eq branch 
ne

blez bgtz

1(001) add 
immediate

addiu set less 
than imm.

set less 
than imm. 
unsigned

andi ori xori load upper 
immediate

2(010) TLB FlPt

3(011)

4(100) load byte load half lwl load word load byte 
unsigned

load 
half
unsigned

lwr

5(101) store byte store half swl store word swr

6(110) load linked 
word

lwc1

7(111) store cond. 
word

swc1

op(31:26)=010000 (TLB), rs(25:21)

23–21

25–24

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(00) mfc0 cfc0 mtc0 ctc0
1(01)

2(10)

3(11)

op(31:26)=000000 (R-format), funct(5:0)

2–0

5–3

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) shift left 
logical

shift right 
logical

sra sllv srlv srav

1(001) jump register jalr syscall break

2(010) mfhi mthi mfl o mtlo  

3(011) mult multu div divu  

4(100) add addu subtract subu and or xor not or (nor)
5(101) set l.t. set l.t. 

unsigned
6(110)

7(111)

FIGURE 2.19 MIPS instruction encoding. This notation gives the value of a fi eld by row and by column. For example, the top portion 
of the fi gure shows load word in row number 4 (100two for bits 31−29 of the instruction) and column number 3 (011two for bits 28−26 of the 
instruction), so the corresponding value of the op fi eld (bits 31−26) is 100011two. Underscore means the fi eld is used elsewhere. For example, 
R-format in row 0 and column 0 (op = 000000two) is defi ned in the bottom part of the fi gure. Hence, subtract in row 4 and column 2 
of the bottom section means that the funct fi eld (bits 5−0) of the instruction is 100010two and the op fi eld (bits 31−26) is 000000two. The 
fl oating point value in row 2, col umn 1 is defi ned in Figure 3.18 in Chapter 3. Bltz/gez is the opcode for four instructions found in 
Appendix B: bltz, bgez, bltzal, and bgezal. This chapter describes instructions given in full name using color, while Chapter 3 describes 
instructions given in mnemonics using color. Appendix B covers all instructions. 
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136 Chapter 2 Instructions: Language of the Computer

Figure 2.20 shows all the MIPS instruction formats. Figure 2.1 on page 78 shows 
the MIPS assembly language revealed in this chapter. The remaining hid den portion 
of MIPS instructions deals mainly with arithmetic and real numbers, which are 
covered in the next chapter.

I. What is the range of addresses for conditional branches in MIPS (K = 1024)?

1. Addresses between 0 and 64K − 1

2. Addresses between 0 and 256K − 1

3. Addresses up to about 32K before the branch to about 32K after

4. Addresses up to about 128K before the branch to about 128K after

II. What is the range of addresses for jump and jump and link in MIPS (M = 1024K)?

1. Addresses between 0 and 64M − 1

2. Addresses between 0 and 256M − 1

3. Addresses up to about 32M before the branch to about 32M after

4. Addresses up to about 128M before the branch to about 128M after

5. Anywhere within a block of 64M addresses where the PC supplies the upper 
6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the upper 
4 bits

III. What is the MIPS assembly language instruction corresponding to the machine 
instruction with the value 0000 0000hex?

1. j
2. R-format
3. addi
4. sll
5. mfc0

6. Undefi ned opcode: there is no legal instruction that corresponds to 0

Check 
Yourself

Check 
Yourself

Name Fields Comments

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions are 32 bits long

R-format op rs rt rd shamt funct Arithmetic instruction format

I-format op rs rt address/immediate Transfer, branch, imm. format

J-format op target address Jump instruction format

FIGURE 2.20 MIPS instruction formats. 
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  2.11 
 Parallelism and Instructions: 
Synchronization 

Parallel execution is easier when tasks are independent, but often they need to cooperate. 
Cooperation usually means some tasks are writing new values that oth ers must read. 
To know when a task is fi nished writing so that it is safe for another to read, the tasks 
need to synchronize. If they don’t synchronize, there is a danger of a data race, where 
the results of the program can change depending on how events happen to occur.

For example, recall the analogy of the eight reporters writing a story on page 
43 of Chapter 1. Suppose one reporter needs to read all the prior sections before 
writing a conclusion. Hence, he must know when the other reporters have fi nished 
their sections, so that he or she need not worry about them being changed after-
wards. That is, they had better synchronize the writing and reading of each section 
so that the con clusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level 
software routines that rely on hardware-supplied synchronization instructions. In 
this section, we focus on the implementation of lock and unlock synchronization 
operations. Lock and unlock can be used straightforwardly to create regions where 
only a single processor can operate, called mutual exclusion, as well as to implement 
more complex synchronization mechanisms.

The critical ability we require to implement synchronization in a multiproces sor is 
a set of hardware primitives with the ability to atomically read and modify a memory 
location. That is, nothing else can interpose itself between the read and the write of the 
memory location. Without such a capability, the cost of building basic synchroniza-
tion primitives will be too high and will increase as the proces sor count increases. 

There are a number of alternative formulations of the basic hardware primi-
tives, all of which provide the ability to atomically read and modify a location, 
together with some way to tell if the read and write were performed atomically. In 
general, architects do not expect users to employ the basic hardware primitives, but 
instead expect that the primitives will be used by system programmers to build a 
synchronization library, a process that is often complex and tricky. 

Let’s start with one such hardware primitive and show how it can be used to 
build a basic synchronization primitive. One typical operation for building syn-
chronization operations is the atomic exchange or atomic swap, which inter changes 
a value in a register for a value in memory. 

To see how to use this to build a basic synchronization primitive, assume that 
we want to build a simple lock where the value 0 is used to indicate that the lock 
is free and 1 is used to indicate that the lock is unavailable. A processor tries to set 
the lock by doing an exchange of 1, which is in a register, with the memory address 
corresponding to the lock. The value returned from the exchange instruc tion is 1 if 
some other processor had already claimed access and 0 otherwise. In the latter 
case, the value is also changed to 1, preventing any competing exchange in another 
processor from also retrieving a 0.

data race Two memory 
accesses form a data race 
if they are from different 
threads to same location, 
at least one is a write, 
and they occur one after 
another.

data race Two memory 
accesses form a data race 
if they are from different 
threads to same location, 
at least one is a write, 
and they occur one after 
another.
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138 Chapter 2 Instructions: Language of the Computer

For example, consider two processors that each try to do the exchange simulta-
neously: this race is broken, since exactly one of the processors will perform the 
exchange fi rst, returning 0, and the second processor will return 1 when it does the 
exchange. The key to using the exchange primitive to implement synchroniza tion 
is that the operation is atomic: the exchange is indivisible, and two simulta neous 
exchanges will be ordered by the hardware. It is impossible for two processors 
trying to set the synchronization variable in this manner to both think they have 
simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in 
the design of the processor, since it requires both a memory read and a write in a 
single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction 
returns a value showing whether the pair of instructions was executed as if the pair 
were atomic. The pair of instructions is effectively atomic if it appears as if all other 
operations executed by any processor occurred before or after the pair. Thus, when 
an instruction pair is effectively atomic, no other processor can change the value 
between the instruction pair. 

In MIPS this pair of instructions includes a special load called a load linked and 
a special store called a store conditional. These instructions are used in sequence: 
if the contents of the memory location specifi ed by the load linked are changed 
before the store conditional to the same address occurs, then the store conditional 
fails. The store conditional is defi ned to both store the value of a register in mem-
ory and to change the value of that register to a 1 if it succeeds and to a 0 if it fails. 
Since the load linked returns the initial value, and the store conditional returns 1 
only if it succeeds, the following sequence implements an atomic exchange on the 
memory location specifi ed by the contents of $s1:

try: add $t0,$zero,$s4  ;copy exchange value
ll $t1,0($s1)  ;load linked
sc $t0,0($s1)  ;store conditional
beq $t0,$zero,try ;branch store fails
add $s4,$zero,$t1 ;put load value in $s4

At the end of this sequence the contents of $s4 and the memory location speci-
fi ed by $s1 have been atomically exchanged. Any time a processor intervenes and 
modifi es the value in memory between the ll and sc instructions, the sc returns 
0 in $t0, causing the code sequence to try again.

Elaboration: Although it was presented for multiprocessor synchronization, atomic 
exchange is also useful for the operating system in dealing with multiple processes 
in a single processor. To make sure nothing interferes in a single processor, the store 
conditional also fails if the processor does a context switch between the two instructions 
(see Chapter 5).
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Since the store conditional will fail after either another attempted store to the load 
linked address or any exception, care must be taken in choosing which instructions are 
inserted between the two instructions. In particular, only register-register instructions 
can safely be permitted; otherwise, it is possible to create deadlock situations where 
the processor can never complete the sc because of repeated page faults. In addition, 
the number of instructions between the load linked and the store conditional should be 
small to minimize the probability that either an unre lated event or a competing processor 
causes the store conditional to fail frequently. 

An advantage of the load linked/store conditional mechanism is that it can be used 
to build other synchronization primitives, such as atomic compare and swap or atomic 
fetch-and-increment, which are used in some parallel programming models. These involve 
more instruc tions between the ll and the sc.

When do you use primitives like load linked and store conditional? 

1. When cooperating threads of a parallel program need to synchronize to get 
proper behavior for reading and writing shared data

2. When cooperating processes on a uniprocessor need to synchronize for 
reading and writing shared data

  2.12 Translating and Starting a Program

This section describes the four steps in transforming a C program in a fi le on disk 
into a program running on a computer. Figure 2.21 shows the translation hierar-
chy. Some systems combine these steps to reduce translation time, but these are the 
logical four phases that programs go through. This section follows this trans lation 
hierarchy. 

Compiler

The compiler transforms the C program into an assembly language program, a 
symbolic form of what the machine understands. High-level language programs 
take many fewer lines of code than assembly language, so programmer productiv-
ity is much higher. 

In 1975, many operating systems and assemblers were written in assembly lan-
guage because memories were small and compilers were ineffi cient. The 500,000-
fold increase in memory capacity per single DRAM chip has reduced program size 
concerns, and optimizing compilers today can produce assembly language pro-
grams nearly as good as an assembly language expert, and sometimes even better 
for large programs. 

Check 
Yourself
Check 
Yourself

assembly language 
A sym bolic language that 
can be trans lated into 
binary machine language.

assembly language 
A sym bolic language that 
can be trans lated into 
binary machine language.
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140 Chapter 2 Instructions: Language of the Computer

Assembler

Since assembly language is an interface to higher-level software, the assembler can also 
treat common variations of machine language instructions as if they were instructions 
in their own right. The hardware need not implement these instructions; however, 
their appearance in assembly language simplifi es translation and programming. Such 
instructions are called pseudoinstructions.

As mentioned above, the MIPS hardware makes sure that register $zero always 
has the value 0. That is, whenever register $zero is used, it supplies a 0, and the 
programmer cannot change the value of register $zero. Register $zero is used 

pseudoinstruction 
A com mon variation 
of assembly lan guage 
instructions often treated 
as if it were an  instruction 
in its own right.

pseudoinstruction 
A com mon variation 
of assembly lan guage 
instructions often treated 
as if it were an  instruction 
in its own right.

Loader

C program

Compiler

Assembly language program

Assembler

Object: Machine language module Object: Library routine (machine language)

Linker

Memory

Executable: Machine language program

FIGURE 2.21 A translation hierarchy for C. A high-level language program is fi rst compiled into 
an assembly language program and then assembled into an object module in machine language. The linker 
combines multiple modules with library routines to resolve all references. The loader then places the machine 
code into the proper memory locations for execution by the processor. To speed up the translation process, 
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use 
linking loaders that perform the last two steps. To identify the type of fi le, UNIX follows a suffi x convention 
for fi les: C source fi les are named x.c, assembly fi les are x.s, object fi les are named x.o, stati cally linked 
library routines are x.a, dynamically linked library routes are x.so, and executable fi les by default are called 
a.out. MS-DOS uses the suffi xes .C, .ASM, .OBJ, .LIB, .DLL, and .EXE to the same effect. 
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to create the assembly language instruction move that copies the contents of one 
register to another. Thus the MIPS assembler accepts this instruction even though 
it is not found in the MIPS architecture:

move $t0,$t1 # register $t0 gets register $t1

The assembler converts this assembly language instruction into the machine lan-
guage equivalent of the following instruction:

add  $t0,$zero,$t1 # register $t0 gets 0 + register $t1

The MIPS assembler also converts blt (branch on less than) into the two 
instructions slt and bne mentioned in the example on page 128. Other examples 
include bgt, bge, and ble. It also converts branches to faraway locations into a 
branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants 
to be loaded into a register despite the 16-bit limit of the immediate instructions. 

In summary, pseudoinstructions give MIPS a richer set of assembly language 
instructions than those implemented by the hardware. The only cost is reserving 
one register, $at, for use by the assembler. If you are going to write assembly pro-
grams, use pseudoinstructions to simplify your task. To understand the MIPS 
architecture and be sure to get best performance, however, study the real MIPS 
instructions found in Figures 2.1 and 2.19.

Assemblers will also accept numbers in a variety of bases. In addition to binary 
and decimal, they usually accept a base that is more succinct than binary yet con-
verts easily to a bit pattern. MIPS assemblers use hexadecimal. 

Such features are convenient, but the primary task of an assembler is assembly 
into machine code. The assembler turns the assembly language program into an 
object fi le, which is a combination of machine language instructions, data, and 
information needed to place instructions properly in memory. 

To produce the binary version of each instruction in the assembly language 
pro gram, the assembler must determine the addresses corresponding to all  labels. 
Assemblers keep track of labels used in branches and data transfer instructions 
in a symbol table. As you might expect, the table contains pairs of symbols and 
addresses.

The object fi le for UNIX systems typically contains six distinct pieces:

The object fi le header describes the size and position of the other pieces of the 
object fi le.

The text segment contains the machine language code.

The static data segment contains data allocated for the life of the program. 
(UNIX allows programs to use both static data, which is allocated throughout 
the program, and dynamic data, which can grow or shrink as needed by the 
program. See Figure 2.13.)

The relocation information identifi es instructions and data words that depend 
on absolute addresses when the program is loaded into memory.

■

■

■

■

symbol table A table 
that matches names of 
labels to the addresses of 
the memory words that 
instructions  occupy.

symbol table A table 
that matches names of 
labels to the addresses of 
the memory words that 
instructions  occupy.
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142 Chapter 2 Instructions: Language of the Computer

The symbol table contains the remaining labels that are not defi ned, such as 
external references.

The debugging information contains a concise description of how the mod-
ules were compiled so that a debugger can associate machine instructions 
with C source fi les and make data structures readable.

The next subsection shows how to attach such routines that have already been 
assembled, such as library routines.

Linker

What we have presented so far suggests that a single change to one line of one proce -
dure requires compiling and assembling the whole program. Complete retransla -
tion is a terrible waste of computing resources. This repetition is particularly 
wasteful for standard library routines, because programmers would be compiling 
and assembling routines that by defi nition almost never change. An alternative is 
to compile and assemble each procedure independently, so that a change to one 
line would require compiling and assembling only one procedure. This alternative 
requires a new systems program, called a link  editor or linker, which takes all 
the independently assembled machine language programs and “stitches” them 
together.

There are three steps for the linker:

1. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object 
module to resolve all undefi ned labels. Such references occur in branch instruc-
tions, jump instructions, and data addresses, so the job of this program is much 
like that of an editor: it fi nds the old addresses and replaces them with the new 
addresses. Editing is the origin of the name “link editor,” or linker for short. The 
reason a linker is useful is that it is much faster to patch code than it is to recom pile 
and reassemble.

If all external references are resolved, the linker next determines the memory 
locations each module will occupy. Recall that Figure 2.13 on page 120 shows 
the MIPS convention for allocation of program and data to memory. Since the 
fi les were assembled in isolation, the assembler could not know where a module’s 
instructions and data would be placed relative to other modules. When the linker 
places a module in memory, all absolute references, that is, memory addresses that 
are not relative to a register, must be relocated to refl ect its true location. 

The linker produces an executable fi le that can be run on a computer. Typi cally, 
this fi le has the same format as an object fi le, except that it contains no unre solved 
references. It is possible to have partially linked fi les, such as library routines, that 
still have unresolved addresses and hence result in object fi les.

■

■

linker Also called link 
editor. A systems 
program that com bines 
independently assembled 
machine  language 
programs and resolves all 
undefi ned labels into an 
executable fi le.

linker Also called link 
editor. A systems 
program that com bines 
independently assembled 
machine  language 
programs and resolves all 
undefi ned labels into an 
executable fi le.

executable fi le A 
functional program in 
the format of an object 
fi le that contains no unre-
solved references. It can 
contain  symbol tables and 
debugging information. 
A “stripped execut able” 
does not contain that 
infor mation. Relocation 
information may be 
included for the loader.

executable fi le A 
functional program in 
the format of an object 
fi le that contains no unre-
solved references. It can 
contain  symbol tables and 
debugging information. 
A “stripped execut able” 
does not contain that 
infor mation. Relocation 
information may be 
included for the loader.
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Linking Object Files

Link the two object fi les below. Show updated addresses of the fi rst few 
in structions of the completed executable fi le. We show the instructions in 
as sembly language just to make the example understandable; in reality, the 
instructions would be numbers.

Note that in the object fi les we have highlighted the addresses and symbols 
that must be updated in the link process: the instructions that refer to the 
addresses of procedures A and  B and the instructions that refer to the addresses 
of data words X and Y.

EXAMPLEEXAMPLE

Object fi le header

Name Procedure A
Text size 100hex

Data size 20hex

Text segment Address Instruction

0 lw $a0, 0($gp)

4 jal 0
… …

Data segment 0 (X)
… …

Relocation information Address Instruction type Dependency

 0 lw X

4 jal B

Symbol table Label Address

X –

B –

Object fi le header

Name Procedure B
Text size 200hex

Data size 30hex

Text segment Address Instruction

0 sw $a1, 0($gp)
4 jal 0
… …

Data segment 0 (Y)
… …

Relocation information Address Instruction type Dependency

 0 sw Y
4 jal A

Symbol table Label Address

Y –

A –

Object fi le header

Name Procedure A
Text size 100hex

Data size 20hex

Text segment Address Instruction

0 lw $a0, 0($gp)

4 jal 0
… …

Data segment 0 (X)
… …

Relocation information Address Instruction type Dependency

 0 lw X

4 jal B

Symbol table Label Address

X –

B –

Object fi le header

Name Procedure B
Text size 200hex

Data size 30hex

Text segment Address Instruction

0 sw $a1, 0($gp)
4 jal 0
… …

Data segment 0 (Y)
… …

Relocation information Address Instruction type Dependency

 0 sw Y
4 jal A

Symbol table Label Address

Y –

A –
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144 Chapter 2 Instructions: Language of the Computer

Procedure A needs to fi nd the address for the variable labeled X to put in the 
load instruction and to fi nd the address of procedure B to place in the jal 
in struction. Procedure B needs the address of the variable labeled Y for the 
store instruction and the address of procedure A for its jal instruction.

From Figure 2.13 on page 120, we know that the text segment starts at 
ad dress 40 0000hex and the data segment at 1000 0000hex. The text of proce-
dure A is placed at the fi rst address and its data at the second. The object fi le 
header for procedure A says that its text is 100hex bytes and its data is 20hex bytes, 
so the starting address for procedure B text is 40 0100hex, and its data starts 
at 1000 0020hex. 

Figure 2.13 also shows that the text segment starts at address 40 0000hex 

and the data segment at 1000 0000hex. The text of procedure A is placed at the 
fi rst address and its data at the second. The object fi le header for proce dure A 
says that its text is 100hex bytes and its data is 20hex bytes, so the start ing address 
for procedure B text is 40 0100hex, and its data starts at 1000 0020hex. 

Now the linker updates the address fi elds of the instructions. It uses the 
instruction type fi eld to know the format of the address to be edited. We have 
two types here:

ANSWERANSWER

Executable fi le header

Text size 300hex

Data size 50hex

Text segment Address Instruction

0040 0000hex lw $a0, 8000hex($gp)

0040 0004hex jal 40 0100hex
… …

0040 0100hex sw $a1, 8020hex($gp)

0040 0104hex jal 40 0000hex
… …

Data segment Address

1000 0000hex (X)
… …

1000 0020hex (Y)
… …

Executable fi le header

Text size 300hex

Data size 50hex

Text segment Address Instruction

0040 0000hex lw $a0, 8000hex($gp)

0040 0004hex jal 40 0100hex
… …

0040 0100hex sw $a1, 8020hex($gp)

0040 0104hex jal 40 0000hex
… …

Data segment Address

1000 0000hex (X)
… …

1000 0020hex (Y)
… …
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1. The jals are easy because they use pseudodirect addressing. The jal at 
address 40 0004hex gets 40 0100hex (the address of procedure B) in its 
address fi eld, and the jal at 40 0104hex gets 40 0000hex (the address of 
procedure A) in its address fi eld. 

2. The load and store addresses are harder because they are relative to a 
base register. This example uses the global pointer as the base register. 
Figure 2.13 shows that $gp is initialized to 1000 8000hex. To get the 
address 1000 0000hex (the address of word X), we place 8000hex in the 
address fi eld of lw at address 40 0000hex. Similarly, we place 8020hex 
in the address fi eld of sw at address 40 0100hex to get the address 
1000 0020hex (the address of word Y).

Elaboration: Recall that MIPS instructions are word aligned, so jal drops the 
right two bits to increase the instruction’s address range. Thus, it use 26 bits to 
create a 28-bit byte address. Hence, the actual address in the lower 26 bits of the 
jal instruction in this example is 10 0040hex, rather than 40 0100hex.

Loader

Now that the executable fi le is on disk, the operating system reads it to memory and 
starts it. The loader follows these steps in UNIX systems:

1. Reads the executable fi le header to determine size of the text and data segments.

2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable fi le into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the machine registers and sets the stack pointer to the fi rst free 
location.

6. Jumps to a start-up routine that copies the parameters into the argument 
registers and calls the main routine of the program. When the main routine 
returns, the start-up routine terminates the program with an exit system call.

Sections B.3 and B.4 in Appendix B describe linkers and loaders in more detail.

Dynamically Linked Libraries

The fi rst part of this section describes the traditional approach to linking libraries 
before the program is run. Although this static approach is the fastest way to call 
library routines, it has a few disadvantages:

loader A systems 
program that places an 
object program in main 
memory so that it is ready 
to execute.

loader A systems 
program that places an 
object program in main 
memory so that it is ready 
to execute.
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146 Chapter 2 Instructions: Language of the Computer

The library routines become part of the executable code. If a new version of 
the library is released that fi xes bugs or supports new hardware devices, the 
statically linked program keeps using the old version.

It loads all routines in the library that are called anywhere in the executable, 
even if those calls are not executed. The library can be large relative to the 
program; for example, the standard C library is 2.5 MB.

These disadvantages lead to dynamically linked libraries (DLLs), where the 
library routines are not linked and loaded until the program is run. Both the pro-
gram and library routines keep extra information on the location of nonlocal pro-
cedures and their names. In the initial version of DLLs, the loader ran a dynamic 
linker, using the extra information in the fi le to fi nd the appropriate libraries and 
to update all external references.

The downside of the initial version of DLLs was that it still linked all routines 
of the library that might be called, versus only those that are called during the 
running of the program. This observation led to the lazy procedure linkage version 
of DLLs, where each routine is linked only after it is called. 

Like many innovations in our fi eld, this trick relies on a level of indirection. 
Figure 2.22 shows the technique. It starts with the nonlocal routines calling a set of 
dummy routines at the end of the program, with one entry per nonlocal rou tine. 
These dummy entries each contain an indirect jump.

The fi rst time the library routine is called, the program calls the dummy entry 
and follows the indirect jump. It points to code that puts a number in a register to 
identify the desired library routine and then jumps to the dynamic linker/loader. 
The linker/loader fi nds the desired routine, remaps it, and changes the address in 
the indirect jump location to point to that routine. It then jumps to it. When the 
routine completes, it returns to the original calling site. Thereafter, the call to the 
library routine jumps indirectly to the routine without the extra hops. 

In summary, DLLs require extra space for the information needed for dynamic 
linking, but do not require that whole libraries be copied or linked. They pay a good 
deal of overhead the fi rst time a routine is called, but only a single indirect jump 
thereafter. Note that the return from the library pays no extra overhead. Microsoft’s 
Windows relies extensively on dynamically linked libraries, and it is also the default 
when executing programs on UNIX systems today.

Starting a Java Program

The discussion above captures the traditional model of executing a program, 
where the emphasis is on fast execution time for a program targeted to a specifi c 
instruction set architecture, or even a specifi c implementation of that architec ture. 
Indeed, it is possible to execute Java programs just like C. Java was invented with 
a different set of goals, however. One was to run safely on any computer, even if it 
might slow execution time. 

■

■

dynamically linked 
libraries (DLLs) Library 
routines that are linked 
to a program during 
execution.

dynamically linked 
libraries (DLLs) Library 
routines that are linked 
to a program during 
execution.
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FIGURE 2.22 Dynamically linked library via lazy procedure linkage. (a) Steps for the fi rst 
time a call is made to the DLL routine. (b) The steps to fi nd the routine, remap it, and link it are skipped on 
subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired routine by 
remapping it using virtual memory management. 
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Figure 2.23 shows the typical translation and execution steps for Java. Rather 
than compile to the assembly language of a target computer, Java is compiled fi rst 
to instructions that are easy to interpret: the Java bytecode instruction set (see

Section 2.15 on the CD). This instruction set is designed to be close to the 
Java language so that this compilation step is trivial. Virtually no optimizations 
are performed. Like the C compiler, the Java compiler checks the types of data 
and produces the proper operation for each type. Java programs are distributed 
in the binary version of these bytecodes.

A software interpreter, called a Java Virtual Machine (JVM), can execute Java 
bytecodes. An interpreter is a program that simulates an instruction set architec-
ture. For example, the MIPS simulator used with this book is an interpreter. There 
is no need for a separate assembly step since either the translation is so simple that 
the compiler fi lls in the addresses or JVM fi nds them at runtime.

Java bytecode 
Instruction from an 
instruction set designed to 
interpret Java programs.

Java bytecode 
Instruction from an 
instruction set designed to 
interpret Java programs.

Java Virtual Machine 
(JVM) The program that 
inter prets Java bytecodes.

Java Virtual Machine 
(JVM) The program that 
inter prets Java bytecodes.
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148 Chapter 2 Instructions: Language of the Computer

The upside of interpretation is portability. The availability of software Java vir-
tual machines meant that most people could write and run Java programs shortly 
after Java was announced. Today, Java virtual machines are found in hundreds of 
millions of devices, in everything from cell phones to Internet browsers.

The downside of interpretation is lower performance. The incredible advances 
in performance of the 1980s and 1990s made interpretation viable for many 
important applications, but the factor of 10 slowdown when compared to tradi-
tionally compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java 
development was compilers that translated while the program was running. Such 
Just In Time compilers (JIT) typically profi le the running program to fi nd where 
the “hot” methods are and then compile them into the native instruction set on 
which the virtual machine is running. The compiled portion is saved for the next 
time the program is run, so that it can run faster each time it is run. This balance 
of interpretation and compilation evolves over time, so that frequently run Java 
programs suffer little of the overhead of interpretation. 

As computers get faster so that compilers can do more, and as researchers invent 
betters ways to compile Java on the fl y, the performance gap between Java and C or 
C++ is closing. Section 2.15 on the CD goes into much greater depth on the 
implementation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the advantages of an interpreter over a translator do you think was most 
important for the designers of Java? 

1. Ease of writing an interpreter

2. Better error messages

3. Smaller object code

4. Machine independence

Just In Time compiler 
(JIT) The name 
commonly given to a 
compiler that operates at 
runtime, translating the 
inter preted code segments 
into the native code of the 
computer.

Just In Time compiler 
(JIT) The name 
commonly given to a 
compiler that operates at 
runtime, translating the 
inter preted code segments 
into the native code of the 
computer.

Check 
Yourself

Check 
Yourself

FIGURE 2.23 A translation hierarchy for Java. A Java program is fi rst compiled into a binary version 
of Java bytecodes, with all addresses defi ned by the compiler. The Java program is now ready to run on the 
interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in the Java library while 
the program is running. To achieve greater performance, the JVM can invoke the JIT compiler, which selectively 
compiles methods into the native machine language of the machine on which it is running. 

Java program

Compiler

Class files (Java bytecodes)

Java Virtual Machine

Compiled Java methods (machine language)

Java library routines (machine language)

Just In Time
compiler
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  2.13 A C Sort Example to Put It All Together

One danger of showing assembly language code in snippets is that you will have 
no idea what a full assembly language program looks like. In this section, we derive 
the MIPS code from two procedures written in C: one to swap array ele ments and 
one to sort them. 

The Procedure swap
Let’s start with the code for the procedure swap in Figure 2.24. This procedure 
simply swaps two locations in memory. When translating from C to assembly lan-
guage by hand, we follow these general steps:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by 
putting all the pieces together.

Register Allocation for swap
As mentioned on pages 112–113, the MIPS convention on parameter passing is to 
use registers $a0, $a1, $a2, and $a3. Since swap has just two parameters, v and 
k, they will be found in registers $a0 and $a1. The only other variable is temp, 
which we associate with register $t0 since swap is a leaf procedure (see page 116). 

void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

FIGURE 2.24 A C procedure that swaps two locations in memory. This subsection uses this 
procedure in a sorting example. 
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150 Chapter 2 Instructions: Language of the Computer

This register allocation corresponds to the variable declarations in the fi rst part of 
the swap procedure in Figure 2.24. 

Code for the Body of the Procedure swap
The remaining lines of C code in swap are

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Recall that the memory address for MIPS refers to the byte address, and so words 
are really 4 bytes apart. Hence we need to multiply the index k by 4 before adding it 
to the address. Forgetting that sequential word addresses differ by 4 instead of by 1 is 
a common mistake in assembly language programming. Hence the fi rst step is to get 
the address of v[k] by multiplying k by 4 via a shift left by 2:

sll $t1, $a1,2 # reg $t1 = k * 4 
add $t1, $a0,$t1 # reg $t1 = v + (k * 4) 
  # reg $t1 has the address of v[k]

Now we load v[k] using $t1, and then v[k+1] by adding 4 to $t1:

lw $t0, 0($t1) # reg $t0 (temp) = v[k]
lw $t2, 4($t1) # reg $t2 = v[k + 1]
  # refers to next element of v

Next we store $t0 and $t2 to the swapped addresses:

sw $t2, 0($t1) # v[k] = reg $t2
sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

Now we have allocated registers and written the code to perform the operations 
of the procedure. What is missing is the code for preserving the saved registers used 
within swap. Since we are not using saved registers in this leaf procedure, there is 
nothing to preserve. 

The Full swap Procedure
We are now ready for the whole routine, which includes the procedure label and 
the return jump. To make it easier to follow, we identify in Figure 2.25 each block 
of code with its purpose in the procedure.

The Procedure sort
To ensure that you appreciate the rigor of programming in assembly language, 
we’ll try a second, longer example. In this case, we’ll build a routine that calls the 
swap procedure. This program sorts an array of integers, using bubble or exchange 
sort, which is one of the simplest if not the fastest sorts. Figure 2.26 shows the C 
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version of the program. Once again, we present this procedure in sev eral steps, 
concluding with the full procedure. 

Register Allocation for sort
The two parameters of the procedure sort, v and n, are in the parameter registers 
$a0 and $a1, and we assign register $s0 to i and register $s1 to j. 

Code for the Body of the Procedure sort
The procedure body consists of two nested for loops and a call to swap that 
includes parameters. Let’s unwrap the code from the outside to the middle.

The fi rst translation step is the fi rst for loop:

for (i = 0; i < n; i += 1) {

Recall that the C for statement has three parts: initialization, loop test, and itera-
tion increment. It takes just one instruction to initialize i to 0, the fi rst part of the 
for statement:

move $s0, $zero # i = 0

void sort (int v[], int n)
{
 int i, j;
 for (i = 0; i < n; i += 1) {
  for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j -= 1) {
    swap(v,j);
  }
 }
}

FIGURE 2.26 A C procedure that performs a sort on the array v. 

Procedure body

swap: sll $t1, $a1, 2  # reg $t1 = k * 4 
 add $t1, $a0, $t1    # reg $t1 = v + (k * 4) 
    # reg $t1 has the address of v[k]
 lw $t0, 0($t1)  # reg $t0 (temp) = v[k]
 lw $t2, 4($t1)  # reg $t2 = v[k + 1]
    # refers to next element of v
 sw $t2, 0($t1)  # v[k] = reg $t2
 sw $t0, 4($t1)  # v[k+1] = reg $t0 (temp)

Procedure return

 jr $ra  # return to calling routine

FIGURE 2.25 MIPS assembly code of the procedure swap in Figure 2.24. 
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152 Chapter 2 Instructions: Language of the Computer

(Remember that move is a pseudoinstruction provided by the assembler for the 
convenience of the assembly language programmer; see page 141.) It also takes 
just one instruction to increment i, the last part of the for statement:

addi $s0, $s0, 1 # i += 1

The loop should be exited if i < n is not true or, said another way, should be exited 
if i ≥ n. The set on less than instruction sets register $t0 to 1 if $s0 < $a1 and to 0 
otherwise. Since we want to test if $s0  ≥  $a1, we branch if register $t0 is 0. This 
test takes two instructions:

for1tst:slt $t0, $s0, $a1 # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)
   beq $t0, $zero,exit1 # go to exit1 if $s0 ≥ $a1 (i≥n)

The bottom of the loop just jumps back to the loop test:

 j for1tst  # jump to test of outer loop
exit1:

The skeleton code of the fi rst for loop is then

 move $s0, $zero # i = 0
for1tst:slt $t0, $s0, $a1 # reg $t0 = 0 if $s0 ≥ $a1 (i≥n)
 beq $t0, $zero,exit1 # go to exit1 if $s0 ≥ $a1 (i≥n)
  . . .
  (body of fi rst for loop)
  . . .
 addi $s0, $s0, 1 # i += 1
 j for1tst # jump to test of outer loop
exit1:

Voila! (The exercises explore writing faster code for similar loops.)
The second for loop looks like this in C:

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j –= 1) {

The initialization portion of this loop is again one instruction:

addi $s1, $s0, –1 # j = i – 1

The decrement of j at the end of the loop is also one instruction:

addi $s1, $s1, –1 # j –= 1

The loop test has two parts. We exit the loop if either condition fails, so the fi rst test 
must exit the loop if it fails (j < 0):

for2tst: slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)
 bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

This branch will skip over the second condition test. If it doesn’t skip, j ≥ 0.
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The second test exits if v[j] > v[j + 1] is not true, or exits if v[j] ≤ 

v[j + 1]. First we create the address by multiplying j by 4 (since we need a byte 
address) and add it to the base address of v:

sll $t1, $s1, 2 # reg $t1 = j * 4
add $t2, $a0, $t1 # reg $t2 = v + (j * 4) 

Now we load v[j]:

lw $t3, 0($t2) # reg $t3   = v[j]

Since we know that the second element is just the following word, we add 4 to the 
address in register $t2 to get v[j + 1]:

lw $t4, 4($t2) # reg $t4   = v[j + 1]

The test of v[j] ≤ v[j + 1] is the same as v[j + 1] ≥ v[j], so the two 
instructions of the exit test are

slt $t0, $t4, $t3   # reg $t0 = 0 if $t4 ≥ $t3  
beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3  

The bottom of the loop jumps back to the inner loop test:

j for2tst # jump to test of inner loop

Combining the pieces, the skeleton of the second for loop looks like this:

 addi $s1, $s0, –1 # j = i – 1
for2tst:slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)
  bne $t0, $zero,   exit2  # go to exit2 if $s1 < 0 (j < 0)
 sll $t1, $s1, 2 # reg $t1 = j * 4 
 add $t2, $a0, $t1 # reg $t2 = v + (j * 4) 
 lw $t3, 0($t2) # reg $t3   = v[j]
 lw $t4, 4($t2) # reg $t4   = v[j + 1]
 slt $t0, $t4, $t3  # reg $t0 = 0 if $t4 ≥ $t3  
 beq $t0, $zero,   exit2 # go to exit2 if $t4 ≥ $t3  
  . . .
  (body of second for loop)
  . . .
 addi $s1, $s1, –1 # j –= 1
 j for2tst # jump to test of inner loop
exit2: 

The Procedure Call in sort
The next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

jal swap
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154 Chapter 2 Instructions: Language of the Computer

Passing Parameters in sort
The problem comes when we want to pass parameters because the sort proce dure 
needs the values in registers $a0 and $a1, yet the swap procedure needs to have its 
parameters placed in those same registers. One solution is to copy the parameters 
for sort into other registers earlier in the procedure, making registers $a0 and 
$a1 available for the call of swap. (This copy is faster than saving and restoring on 
the stack.) We fi rst copy $a0 and $a1 into $s2 and $s3 during the procedure:

move $s2, $a0 # copy parameter $a0 into $s2
move $s3, $a1 # copy parameter $a1 into $s3 

Then we pass the parameters to swap with these two instructions:

move $a0, $s2 # fi rst swap parameter is v
move $a1, $s1 # second swap parameter is j

Preserving Registers in sort
The only remaining code is the saving and restoring of registers. Clearly, we must 
save the return address in register $ra, since sort is a procedure and is called itself. 
The sort procedure also uses the saved registers $s0, $s1, $s2, and $s3, so they 
must be saved. The prologue of the sort procedure is then

addi $sp,$sp,–20 # make room on stack for 5 reg isters
sw $ra,16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $s1 on stack
sw $s0, 0($sp) # save $s0 on stack

The tail of the procedure simply reverses all these instructions, then adds a jr to 
return.

The Full Procedure sort
Now we put all the pieces together in Figure 2.27, being careful to replace refer ences 
to registers $a0 and $a1 in the for loops with references to registers $s2 and $s3.
Once again, to make the code easier to follow, we identify each block of code with 
its purpose in the procedure. In this example, nine lines of the sort procedure in 
C became 35 lines in the MIPS assembly language.

Elaboration: One optimization that works with this example is procedure inlining. 
Instead of passing arguments in parameters and invoking the code with a jal instruction, 
the compiler would copy the code from the body of the swap procedure where the call 
to swap appears in the code. Inlining would avoid four instructions in this example. The 
downside of the inlining optimization is that the compiled code would be bigger if the 
inlined procedure is called from several locations. Such a code expansion might turn 
into lower performance if it increased the cache miss rate; see Chapter 5.
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Saving registers

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
 sw $ra, 16($sp)# save $ra on stack
 sw $s3,12($sp) # save $s3 on stack
 sw $s2, 8($sp)# save $s2 on stack
 sw $s1, 4($sp)# save $s1 on stack
 sw $s0, 0($sp)# save $s0 on stack

Procedure body

Move parameters
 move $s2, $a0 # copy parameter $a0 into $s2 (save $a0)
 move $s3, $a1 # copy parameter $a1 into $s3 (save $a1)

Outer loop

 move $s0, $zero# i = 0
for1tst: slt$t0, $s0, $s3 #  reg $t0 = 0 if $s0 Š $s3 (i Š n)
 beq $t0, $zero, exit1# go to exit1 if $s0 Š $s3 (i Š n)

Inner loop

 addi $s1, $s0, –1# j = i – 1
for2tst: slti$t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)
 bne $t0, $zero, exit2# go to exit2 if $s1 < 0 (j < 0)
 sll $t1, $s1, 2# reg $t1 = j * 4 
 add $t2, $s2, $t1# reg $t2 = v + (j * 4) 
 lw $t3, 0($t2)# reg $t3 = v[j]
 lw $t4, 4($t2)# reg $t4 = v[j + 1]
 slt $t0, $t4, $t3  # reg $t0 = 0 if $t4 Š $t3  
 beq $t0, $zero, exit2# go to exit2 if $t4 Š $t3  

Pass parameters
and call

 move $a0, $s2  # 1st parameter of swap is v (old $a0)
 move $a1, $s1 # 2nd parameter of swap is j 
 jal swap  # swap code shown in Figure 2.25

Inner loop  addi $s1, $s1, –1# j –= 1
 j for2tst  # jump to test of inner loop

Outer loop exit2: addi $s0, $s0, 1 # i += 1
 j for1tst  # jump to test of outer loop

Restoring registers

exit1: lw $s0, 0($sp) # restore $s0 from stack
 lw $s1, 4($sp)# restore $s1 from stack
 lw $s2, 8($sp)# restore $s2 from stack
 lw $s3,12($sp) # restore $s3 from stack
 lw $ra,16($sp) # restore $ra from stack
 addi $sp,$sp, 20 # restore stack pointer

Procedure return

 jr $ra  # return to calling routine

FIGURE 2.27 MIPS assembly version of procedure sort in Figure 2.26. 
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156 Chapter 2 Instructions: Language of the Computer

Figure 2.28 shows the impact of compiler optimization on sort program perfor-
mance, compile time, clock cycles, instruction count, and CPI. Note that unopti-
mized code has the best CPI, and O1 optimization has the lowest instruction 
count, but O3 is the fastest, reminding us that time is the only accurate measure of 
program performance.

Figure 2.29 compares the impact of programming languages, compilation 
versus interpretation, and algorithms on performance of sorts. The fourth col-
umn shows that the unoptimized C program is 8.3 times faster than the inter-
preted Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times 
faster than the unoptimized C and within a factor of 1.13 of the highest optimized 
C code. ( Section 2.15 on the CD gives more details on inter pretation versus 
compilation of Java and the Java and MIPS code for Bubble Sort.) The ratios 
aren’t as close for Quicksort in Column 5, presumably because it is harder to 
amortize the cost of runtime compilation over the shorter execu tion time. The 
last column demonstrates the impact of a better algorithm, offer ing three orders 
of magnitude a performance increases by when sorting 100,000 items. Even 
comparing interpreted Java in Column 5 to the C compiler at highest optimization 
in Column 4, Quicksort beats Bubble Sort by a factor of 50 (0.05 × 2468, or 123 
times faster than the unoptimized C code versus 2.41 times faster).

Elaboration: The MIPS compilers always save room on the stack for the arguments 
in case they need to be stored, so in reality they always decrement $sp by 16 to make 
room for all four argument registers (16 bytes). One reason is that C provides a vararg 
option that allows a pointer to pick, say, the third argument to a procedure. When the 
compiler encounters the rare vararg, it copies the four argument registers onto the 
stack into the four reserved locations.

gcc optimization
Relative 

performance
Clock cycles 

(millions)
Instruction count 

(millions) CPI

None 1.00 158,615  114,938  1.38 

O1 (medium) 2.37   66,990   37,470  1.79 

O2 (full) 2.38   66,521   39,993  1.66 

O3 (procedure integration) 2.41   65,747   44,993  1.46 

FIGURE 2.28 Comparing performance, instruction count, and CPI using compiler optimi-
zation for Bubble Sort. The programs sorted 100,000 words with the array initialized to random values. 
These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus with 2 GB 
of PC2100 DDR SDRAM. It used Linux version 2.4.20. 

Understanding 
Program 

Performance
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  2.14 Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing 
assembly code that uses arrays and array indices to the assembly code that uses 
pointers offers insights about pointers. This section shows C and MIPS assembly 
versions of two procedures to clear a sequence of words in memory: one using 
array indices and one using pointers. Figure 2.30 shows the two C procedures. 

The purpose of this section is to show how pointers map into MIPS instructions, 
and not to endorse a dated programming style. We’ll see the impact of modern com-
piler optimization on these two procedures at the end of the section.

Array Version of Clear

Let’s start with the array version, clear1, focusing on the body of the loop and 
ignoring the procedure linkage code. We assume that the two parameters array and 
size are found in the registers $a0 and $a1, and that i is allocated to register $t0. 

The initialization of i, the fi rst part of the for loop, is straightforward:

 move $t0,$zero  # i = 0 (register $t0 = 0)

To set array[i] to 0 we must fi rst get its address. Start by multiplying i by 4 to 
get the byte address:

loop1: sll $t1,$t0,2 # $t1 = i * 4

Since the starting address of the array is in a register, we must add it to the index 
to get the address of array[i] using an add instruction:

 add $t2,$a0,$t1 # $t2 = address of array[i]

Finally, we can store 0 in that address:

Language Execution method Optimization
Bubble Sort relative 

performance
Quicksort relative 

performance
Speedup Quicksort 

vs. Bubble Sort

C Compiler None 1.00 1.00 2468

Compiler O1 2.37 1.50 1562

Compiler O2 2.38 1.50 1555

Compiler O3 2.41 1.91 1955

Java Interpreter – 0.12 0.05 1050

JIT compiler – 2.13 0.29 338

FIGURE 2.29 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative 
to unoptimized C version. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and 
execution option. These programs were run on the same system as Figure 2.28. The JVM is Sun version 1.3.1, and the JIT is Sun Hotspot 
version 1.3.1. 
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158 Chapter 2 Instructions: Language of the Computer

 sw $zero, 0($t2) # array[i] = 0

This instruction is the end of the body of the loop, so the next step is to increment i:

 addi $t0,$t0,1 # i = i + 1

The loop test checks if i is less than size:

 slt $t3,$t0,$a1 # $t3 = (i < size)
 bne $t3,$zero,loop1 # if (i < size) go to loop1

We have now seen all the pieces of the procedure. Here is the MIPS code for 
clearing an array using indices:

 move $t0,$zero  # i = 0
loop1: sll $t1,$t0,2 # $t1 = i * 4
 add $t2,$a0,$t1 # $t2 = address of array[i]
 sw $zero, 0($t2) # array[i] = 0
 addi $t0,$t0,1 # i = i + 1
 slt $t3,$t0,$a1 # $t3 = (i < size)
 bne $t3,$zero,loop1 # if (i < size) go to loop1

(This code works as long as size is greater than 0; ANSI C requires a test of size 
before the loop, but we’ll skip that legality here.)

clear1(int array[], int size) 
{
  int i;
  for (i = 0; i < size; i += 1) 
 array[i] = 0;
}

clear2(int *array, int size) 
{
  int *p;
  for (p = &array[0]; p < 
&array[size]; p = p + 1) 
 *p = 0;
}

FIGURE 2.30 Two C procedures for setting an array to all zeros. Clear1 uses indices, while 
clear2 uses pointers. The second procedure needs some explanation for those unfamiliar with C. The 
address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. The declara-
tions declare that array and p are pointers to integers. The fi rst part of the for loop in clear2 assigns 
the address of the fi rst element of array to the pointer p. The second part of the for loop tests to see if the 
pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the last part of the 
for loop, means moving the pointer to the next sequential object of its declared size. Since p is a pointer to 
integers, the compiler will generate MIPS instructions to increment p by four, the number of bytes in a MIPS 
integer. The assignment in the loop places 0 in the object pointed to by p. 
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Pointer Version of Clear

The second procedure that uses pointers allocates the two parameters array and 
size to the registers $a0 and $a1 and allocates p to register $t0. The code for 
the second procedure starts with assigning the pointer p to the address of the fi rst 
element of the array:

 move $t0,$a0  # p = address of array[0]

The next code is the body of the for loop, which simply stores 0 into p:

loop2: sw $zero,0($t0)  # Memory[p] = 0

This instruction implements the body of the loop, so the next code is the iteration 
increment, which changes p to point to the next word:

 addi $t0,$t0,4  # p = p + 4

Incrementing a pointer by 1 means moving the pointer to the next sequential 
object in C. Since p is a pointer to integers, each of which uses 4 bytes, the compiler 
increments p by 4.

The loop test is next. The fi rst step is calculating the address of the last element 
of array. Start with multiplying size by 4 to get its byte address:

 sll $t1,$a1,2  # $t1 = size * 4

and then we add the product to the starting address of the array to get the address 
of the fi rst word after the array:

 add $t2,$a0,$t1 # $t2 = address of array[size]

The loop test is simply to see if p is less than the last element of array:

 slt $t3,$t0,$t2 # $t3 = (p<&array[size])
 bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

With all the pieces completed, we can show a pointer version of the code to zero 
an array:

 move $t0,$a0 # p = address of array[0]
 loop2:sw$zero,0($t0) # Memory[p] = 0
 addi $t0,$t0,4 # p = p + 4
 sll $t1,$a1,2 # $t1 = size * 4
 add $t2,$a0,$t1 # $t2 = address of array[size]
 slt $t3,$t0,$t2 # $t3 = (p<&array[size])
 bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

As in the fi rst example, this code assumes size is greater than 0.

 2.14 Arrays versus Pointers 159
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160 Chapter 2 Instructions: Language of the Computer

Note that this program calculates the address of the end of the array in every 
iteration of the loop, even though it does not change. A faster version of the code 
moves this calculation outside the loop:

 move $t0,$a0  # p = address of array[0]
 sll $t1,$a1,2  # $t1 = size * 4
 add $t2,$a0,$t1  # $t2 = address of array[size]
loop2:sw$zero,0($t0)  # Memory[p] = 0
 addi $t0,$t0,4  # p = p + 4
 slt $t3,$t0,$t2  # $t3 = (p<&array[size])
 bne $t3,$zero,loop2  # if (p<&array[size]) go to loop2

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the difference between 
array indices and pointers (the changes introduced by the pointer version are 
highlighted):

The version on the left must have the “multiply” and add inside the loop 
because i is incremented and each address must be recalculated from the new 
index. The memory pointer version on the right increments the pointer p directly. 
The pointer version moves them outside the loop, thereby reducing the instruc-
tions executed per iteration from 6 to 4. This manual optimization corresponds 
to the compiler optimization of strength reduction (shift instead of multiply) 
and induction variable elimina tion (eliminating array address calculations 
within loops). Section 2.15 on the CD describes these two and many other 
optimizations.

Elaboration: As mentioned ealier, a C compiler would add a test to be sure that size 
is greater than 0. One way would be to add a jump just before the fi rst instruction of the 
loop to the slt instruction. 

 move $t0,$zero  # i = 0

loop1: sll $t1,$t0,2 # $t1 = i * 4

 add $t2,$a0,$t1 # $t2 = &array[i]

 sw $zero, 0($t2) # array[i] = 0

 addi $t0,$t0,1 # i = i + 1

 slt $t3,$t0,$a1 # $t3 = (i < size)

 bne $t3,$zero,loop1# if () go to loop1

 move $t0,$a0 # p = & array[0]

 sll $t1,$a1,2 # $t1 = size * 4

 add $t2,$a0,$t1 # $t2 = &array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0

 addi $t0,$t0,4 # p = p + 4

 slt $t3,$t0,$t2     # $t3=(p<&array[size])

 bne $t3,$zero,loop2# if () go to loop2
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People used to be taught to use pointers in C to get greater effi ciency than that 
available with arrays: “Use pointers, even if you can’t understand the code.” Mod-
ern optimizing compilers can produce code for the array version that is just as 
good. Most programmers today prefer that the compiler do the heavy lifting.

   Advanced Material: Compiling C and 
Interpreting Java

This section gives a brief overview of how the C compiler works and how Java is 
executed. Be cause the compiler will signifi cantly affect the performance of a com-
puter, understanding compiler technology today is critical to understanding per-
formance. Keep in mind that the subject of compiler construction is usually taught 
in a one- or two-semester course, so our introduction will necessarily only touch 
on the basics. 

The second part of this section is for readers interested in seeing how an 
objected oriented language like Java executes on a MIPS architecture. It shows the 
Java bytecodes used for interpretation and the MIPS code for the Java version of 
some of the C segments in prior sections, including Bubble Sort. It covers both the 
Java Virtual Machine and JIT compilers.

The rest of this section is on the CD. 

  2.16 Real Stuff: ARM Instructions

ARM is the most popular instruction set architecture for embedded devices, with 
more than three billion devices per year using ARM. Standing originally for the 
Acorn RISC Machine, later changed to Advanced RISC Machine, ARM came out 
the same year as MIPS and followed similar philosophies. Figure 2.31 lists the 
similar ities. The principle difference is that MIPS has more registers and ARM has 
more addressing modes.

There is a similar core of instruction sets for arithmetic-logical and data trans fer 
instructions for MIPS and ARM, as Figure 2.32 shows.  

Addressing Modes

Figure 2.33 shows the data addressing modes supported by ARM. Unlike MIPS, 
ARM does not reserve a register to contain 0. Although MIPS has just three simple 
data addressing modes (see Figure 2.18), ARM has nine, including fairly complex 
calculations. For example, ARM has an addressing mode that can shift one register 

Understanding 
Program 
Performance

2.15 

object oriented 
language A 
programming language 
that is oriented around 
objects rather than 
actions, or data versus 
logic.
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162 Chapter 2 Instructions: Language of the Computer

ARM MIPS 

Date announced 1985 1985

Instruction size (bits) 32 32

Address space (size, model) 32 bits, fl at 32 bits, fl at

Data alignment Aligned Aligned

Data addressing modes 9 3

Integer registers (number, model, size) 15 GPR ´ 32 bits 31 GPR ´ 32 bits

I/O Memory mapped Memory mapped

FIGURE 2.31 Similarities in ARM and MIPS instruction sets. 

Instruction name ARM MIPS

Register-register

Add add addu, addiu

Add (trap if overfl ow) adds; swivs add

Subtract sub subu

Subtract (trap if overfl ow) subs; swivs sub

Multiply mul mult, multu

Divide — div, divu

And and and

Or orr or

Xor eor xor

Load high part register — lui

Shift left logical lsl1 sllv, sll

Shift right logical lsr1 srlv, srl

Shift right arithmetic asr1 srav, sra

Compare cmp, cmn, tst, teq slt/i, slt/iu 

Data transfer

Load byte signed ldrsb lb

Load byte unsigned ldrb lbu

Load halfword signed ldrsh lh

Load halfword unsigned ldrh lhu

Load word ldr lw

Store byte strb sb

Store halfword strh sh

Store word str sw

Read, write special registers mrs, msr move 

Atomic Exchange swp, swpb ll;sc

FIGURE 2.32 ARM register-register and data transfer instructions equivalent to MIPS 
core. Dashes mean the operation is not available in that architecture or not synthesized in a few instruc-
tions. If there are several choices of instructions equivalent to the MIPS core, they are separated by commas. 
ARM includes shifts as part of every data operation instruction, so the shifts with superscript 1 are just a 
variation of a move instruction, such as lsr1. Note that ARM has no divide instruction. 
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by any amount, add it to the other registers to form the address, and then update 
one register with this new address.  

Compare and Conditional Branch

MIPS uses the contents of registers to evaluate conditional branches. ARM uses 
the traditional four condition code bits stored in the program status word: 
neg ative, zero, carry, and overfl ow. They can be set on any arithmetic or logical 
instruction; unlike earlier architectures, this setting is optional on each instruc-
tion. An explicit option leads to fewer problems in a pipelined implementation. 
ARM uses conditional branches to test condition codes to determine all possible 
unsigned and signed relations.

CMP subtracts one operand from the other and the difference sets the condi-
tion codes. Compare negative (CMN) adds one operand to the other, and the sum 
sets the condition codes. TST performs logical AND on the two operands to set all 
condition codes but overfl ow, while TEQ uses exclusive OR to set the fi rst three 
condition codes. 

One unusual feature of ARM is that every instruction has the option of execut-
ing conditionally, depending on the condition codes. Every instruction starts with 
a 4-bit fi eld that determines whether it will act as a no operation instruction (nop) 
or as a real instruction, depending on the condition codes. Hence, conditional 
branches are properly con sidered as conditionally executing the unconditional 
branch instruction. Condi tional execution allows avoiding a branch to jump over a 
single instruction. It takes less code space and time to simply conditionally execute 
one instruction. 

Figure 2.34 shows the instruction formats for ARM and MIPS. The principal 
differences are the 4-bit conditional execution fi eld in every instruction and the 
smaller register fi eld, because ARM has half the number of registers.
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FIGURE 2.33 Summary of data addressing modes. ARM has separate register indirect and register 
+ offset addressing modes, rather than just putting 0 in the offset of the latter mode. To get greater addressing 
range, ARM shifts the offset left 1 or 2 bits if the data size is halfword or word. 

Addressing mode ARM v.4 MIPS

Register operand X X

Immediate operand X X

Register + offset (displacement or based) X X

Register + register (indexed) X —

Register + scaled register (scaled) X —

Register + offset and update register X —

Register + register and update register X —

Autoincrement, autodecrement X —

PC-relative data X —
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164 Chapter 2 Instructions: Language of the Computer

Unique Features of ARM

Figure 2.35 shows a few arithmetic-logical instructions not found in MIPS. Since 
it does not have a dedicated register for 0, it has separate opcodes to perform 
some operations that MIPS can do with $zero. In addition, ARM has support for 
multiword arithmetic.

ARM’s 12-bit immediate fi eld has a novel interpretation. The eight least-
signifi cant bits are zero-extended to a 32-bit value, then rotated right the number 
of bits specifi ed in the fi rst four bits of the fi eld multiplied by two. One advantage is 
that this scheme can represent all powers of two in a 32-bit word. Whether this split 
actually catches more immediates than a simple 12-bit fi eld would be an interesting 
study. 

Operand shifting is not limited to immediates. The second register of all 
arithmetic and logical processing operations has the option of being shifted before 
being operated on. The shift options are shift left logical, shift right logical, shift 
right arithmetic, and rotate right. 

FIGURE 2.34 Instruction formats, ARM, and MIPS. The differences result from whether the 
architecture has 16 or 32 registers. 

Register ConstantOpcode

ARM

Register-register

Opx4

31 28 27

28 27

28 27

28 27

19 16 15

16 15

16 15

16 15

16 15

1112 4 3 0

Op8 Rs14 Rd4 Rs24Opx8

Data transfer

ARM Opx4

31 1112 0

Op8 Rs14 Rd4 Const12

Branch

ARM

Jump/Call

Opx4

31 2324 0

Op4 Const24

ARM Opx4

31 2324 0

Op4 Const24

MIPS

31 2526

20

21 20

2526 21 20

21 20

1920

11 10 6 5 0

Const5Rs15 Rs25 Rd5 Opx6Op6

MIPS

31 0

Const16Rs15 Rd5Op6

MIPS

31 2526

2526

0

Rs15 Opx5/Rs25 Const16Op6

31 0

Op6MIPS Const26
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ARM also has instructions to save groups of registers, called block loads and 
stores. Under control of a 16-bit mask within the instructions, any of the 16 regis-
ters can be loaded or stored into memory in a single instruction. These instruc tions 
can save and restore registers on procedure entry and return. These instructions 
can also be used for block memory copy, and today block copies are the most 
important use of this instruction.

  2.17 Real Stuff: x86 Instructions

Designers of instruction sets sometimes provide more powerful operations than 
those found in ARM and MIPS. The goal is generally to reduce the number of 
instructions executed by a program. The danger is that this reduction can occur at 
the cost of simplicity, increasing the time a program takes to execute because the 
instructions are slower. This slowness may be the result of a slower clock cycle time 
or of requiring more clock cycles than a simpler sequence. 

The path toward operation complexity is thus fraught with peril. To avoid these 
problems, designers have moved toward simpler instructions. Section 2.18 dem-
onstrates the pitfalls of complexity.

Evolution of the Intel x86
ARM and MIPS were the vision of single small groups in 1985; the pieces of these 
architectures fi t nicely together, and the whole architecture can be described suc-
cinctly. Such is not the case for the x86; it is the product of several independent 
groups who evolved the architecture over 30 years, adding new features to the 
original instruction set as someone might add clothing to a packed bag. Here are 
important x86 milestones.

Beauty is altogether in 
the eye of the beholder.

Margaret Wolfe 
Hungerford, Molly Bawn, 
1877
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Name Defi nition ARM v.4 MIPS

Load immediate Rd = Imm mov addi, $0,

Not Rd = ~(Rs1) mvn nor, $0,

Move Rd = Rs1 mov or, $0,

Rotate right Rd = Rs i >>  i
Rd0. . . i–1 = Rs31–i. . . 31

ror  

And not Rd = Rs1 & ~(Rs2) bic   

Reverse subtract Rd = Rs2 - Rs1 rsb, rsc

Support for multiword 
integer add

CarryOut, Rd = Rd + Rs1 + 
OldCarryOut

adcs —

Support for multiword 
integer sub

CarryOut, Rd = Rd – Rs1 + 
OldCarryOut

sbcs —

FIGURE 2.35 ARM arithmetic/logical instructions not found in MIPS. 
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166 Chapter 2 Instructions: Language of the Computer

1978: The Intel 8086 architecture was announced as an assembly language–
com patible extension of the then successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide. 
Unlike MIPS, the registers have dedicated uses, and hence the 8086 is not con-
sidered a general-purpose register architecture. 

1980: The Intel 8087 fl oating-point coprocessor is announced. This archi-
tecture extends the 8086 with about 60 fl oating-point instructions. Instead 
of using registers, it relies on a stack (see Section 2.20 and Section 3.7). 

1982: The 80286 extended the 8086 architecture by increasing the address 
space to 24 bits, by creating an elaborate memory-mapping and protection 
model (see Chapter 5), and by adding a few instructions to round out the 
instruction set and to manipulate the protection model.

1985: The 80386 extended the 80286 architecture to 32 bits. In addition to 
a 32-bit architecture with 32-bit registers and a 32-bit address space, the 
80386 added new addressing modes and additional operations. The added 
instructions make the 80386 nearly a general-purpose register machine. The 
80386 also added paging support in addition to segmented addressing (see 
Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs 
without change. 

1989–95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium 
Pro in 1995 were aimed at higher performance, with only four instructions 
added to the user-visible instruction set: three to help with multiprocessing 
(Chapter 7) and a conditional move instruction. 

1997: After the Pentium and Pentium Pro were shipping, Intel announced 
that it would expand the Pentium and the Pentium Pro architectures with 
MMX (Multi Media Extensions). This new set of 57 instructions uses the 
fl oating-point stack to accelerate multimedia and communication applica-
tions. MMX instructions typically operate on multiple short data elements 
at a time, in the tradition of single instruction, multiple data (SIMD) archi-
tectures (see Chapter 7). Pentium II did not introduce any new instructions.

1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD 
Extensions) as part of Pentium III. The primary changes were to add eight 
separate registers, double their width to 128 bits, and add a single precision 
fl oating-point data type. Hence, four 32-bit fl oating-point operations can be 
performed in parallel. To improve memory performance, SSE includes cache 
prefetch instructions plus streaming store instructions that bypass the caches 
and write directly to memory.

2001: Intel added yet another 144 instructions, this time labeled SSE2. The 
new data type is double precision arithmetic, which allows pairs of 64-bit 
 fl oating-point operations in parallel. Almost all of these 144 instructions are 

■

■

■

■

■

■

■

■

general-purpose register 
(GPR) A register that can 
be used for addresses or 
for data with virtually any 
 instruction.
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versions of existing MMX and SSE instructions that operate on 64 bits of 
data in parallel. Not only does this change enable more multimedia opera-
tions, it gives the compiler a different target for fl oating-point operations 
than the unique stack architecture. Compilers can choose to use the eight SSE 
registers as fl oating-point registers like those found in other computers. This 
change boosted the fl oating-point performance of the Pentium 4, the fi rst 
microprocessor to include SSE2 instructions. 

2003: A company other than Intel enhanced the x86 architecture this time. 
AMD announced a set of architectural extensions to increase the address space 
from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address space 
in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also increases 
the number of registers to 16 and increases the number of 128-bit SSE regis ters 
to 16. The primary ISA change comes from adding a new mode called long 
mode that redefi nes the execution of all x86 instructions with 64-bit addresses 
and data. To address the larger number of registers, it adds a new prefi x to 
instructions. Depending how you count, long mode also adds four to ten new 
instructions and drops 27 old ones. PC-relative data addressing is another 
extension. AMD64 still has a mode that is identical to x86 (legacy mode) plus a 
mode that restricts user programs to x86 but allows operating systems to use 
AMD64 (compatibility mode). These modes allow a more graceful transition to 
64-bit addressing than the HP/Intel IA-64 architecture.

2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory 
64 Technology (EM64T). The major difference is that Intel added a 128-bit 
atomic compare and swap instruction, which probably should have been 
included in AMD64. At the same time, Intel announced another generation of 
media extensions. SSE3 adds 13 instructions to support complex arithmetic, 
graphics operations on arrays of structures, video encoding, fl oating-point 
conversion, and thread synchronization (see Section 2.11). AMD will offer 
SSE3 in subsequent chips and it will almost certainly add the missing atomic 
swap instruction to AMD64 to maintain binary compatibility with Intel.

2006: Intel announces 54 new instructions as part of the SSE4 instruction set 
extensions. These extensions perform tweaks like sum of absolute differences, 
dot products for arrays of structures, sign or zero extension of narrow data to 
wider sizes, population count, and so on. They also added support for virtual 
machines (see Chapter 5).

2007: AMD announces 170 instructions as part of SSE5, including 46 instruc-
tions of the base instruction set that adds three operand instructions like 
MIPS.

2008: Intel announces the Advanced Vector Extension that expands the SSE 
register width from 128 to 256 bits, thereby redefi ning about 250 instructions 
and adding 128 new instructions.

■

■

■

■

■
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168 Chapter 2 Instructions: Language of the Computer

This history illustrates the impact of the “golden handcuffs” of compatibility on 
the x86, as the existing software base at each step was too important to jeopar dize 
with signifi cant architectural changes. If you looked over the life of the x86, on 
average the architecture has been extended by one instruction per month!

Whatever the artistic failures of the x86, keep in mind that there are more instances 
of this architectural family on desktop computers than of any other architecture, 
increasing by more than 250 million per year. Nevertheless, this checkered ancestry 
has led to an architecture that is diffi cult to explain and impossible to love. 

Brace yourself for what you are about to see! Do not try to read this section with the 
care you would need to write x86 programs; the goal instead is to give you familiarity 
with the strengths and weaknesses of the world’s most popular desktop architecture.

Rather than show the entire 16-bit and 32-bit instruction set, in this section we 
concentrate on the 32-bit subset that originated with the 80386, as this portion of 
the architecture is what is used today. We start our explanation with the registers 
and addressing modes, move on to the integer operations, and conclude with an 
examination of instruction encoding.

x86 Registers and Data Addressing Modes 

The registers of the 80386 show the evolution of the instruction set (Figure 2.36). The 
80386 extended all 16-bit registers (except the segment registers) to 32 bits, prefi xing 
an E to their name to indicate the 32-bit version. We’ll refer to them generically as 
GPRs (general-purpose registers). The 80386 contains only eight GPRs. This means 
MIPS programs can use four times as many and ARM twice as many. 

Figure 2.37 shows the arithmetic, logical, and data transfer instructions are two-
operand instructions. There are two important differences here. The x86 arith-
metic and logical instructions must have one operand act as both a source and a 
destination; ARM and MIPS allow separate registers for source and destination. 
This restriction puts more pressure on the limited registers, since one source regis-
ter must be modifi ed. The second important difference is that one of the operands 
can be in memory. Thus, virtually any instruction may have one operand in mem-
ory, unlike ARM and MIPS.

Data memory-addressing modes, described in detail below, offer two sizes of 
addresses within the instruction. These so-called displacements can be 8 bits or 32 bits. 

Although a memory operand can use any addressing mode, there are restric-
tions on which registers can be used in a mode. Figure 2.38 shows the x86 address-
ing modes and which GPRs cannot be used with each mode, as well as how to get 
the same effect using MIPS instructions.

x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. The 
80386 adds 32-bit addresses and data (double words) in the x86. (AMD64 adds 64-bit 
addresses and data, called quad words; we’ll stick to the 80386 in this section.) The 
data type distinctions apply to register opera tions as well as memory accesses.
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Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

FIGURE 2.37 Instruction types for the arithmetic, logical, and data transfer instructions. 
The x86 allows the combinations shown. The only restriction is the absence of a memory- memory mode. 
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.36 
(not EIP or EFLAGS). 

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use

031

Name

EAX

ECX

EDX

EBX

ESP

EBP

ESI

EDI

CS

SS

DS

ES

FS

GS

EIP

EFLAGS

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended 
to 32 bits and could also be used as general-purpose registers. 
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170 Chapter 2 Instructions: Language of the Computer

Mode Description
Register 

restrictions MIPS equivalent

Register indirect Address is in a register. Not ESP or EBP lw $s0,0($s1)

Based mode with 8- or 32-bit 
displacement

Address is contents of base register plus 
displacement.

Not ESP lw $s0,100($s1) # <= 16-bit
               # displacement

Base plus scaled index The address is
Base + (2Scale x Index) 

where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

mul $t0,$s2,4
add $t0,$t0,$s1
lw $s0,0($t0)

Base plus scaled index with
8- or 32-bit displacement

The address is
Base + (2Scale x Index) + displacement
where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

mul $t0,$s2,4
add $t0,$t0,$s1
lw $s0,100($t0) # ð16-bit
   # displacement

FIGURE 2.38 x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus Scaled 
Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to turn an index in a register 
into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. A scale factor 
of 0 means the address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode 
would need two more instructions: a lui to load the upper 16 bits of the displacement and an add to sum the upper address with the base 
register $s1. (Intel gives two dif ferent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical 
and we combine them here.) 

Almost every operation works on both 8-bit data and on one longer data size. That 
size is determined by the mode and is either 16 bits or 32 bits.

Clearly, some programs want to operate on data of all three sizes, so the 80386 
architects provided a convenient way to specify each version without expanding 
code size signifi cantly. They decided that either 16-bit or 32-bit data dominates 
most programs, and so it made sense to be able to set a default large size. This 
default data size is set by a bit in the code segment register. To override the default 
data size, an 8-bit prefi x is attached to the instruction to tell the machine to use the 
other large size for this instruction.

The prefi x solution was borrowed from the 8086, which allows multiple prefi xes 
to modify instruction behavior. The three original prefi xes override the default seg-
ment register, lock the bus to support synchronization (see Section 2.11), or repeat 
the following instruction until the register ECX counts down to 0. This last prefi x 
was intended to be paired with a byte move instruction to move a variable number of 
bytes. The 80386 also added a prefi x to override the default address size.

The x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test, integer, and decimal arith-
metic operations

3. Control fl ow, including conditional branches, unconditional jumps, calls, 
and returns

4. String instructions, including string move and string compare
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The fi rst two categories are unremarkable, except that the arithmetic and logic 
instruction operations allow the destination to be either a register or a memory 
location. Figure 2.39 shows some typical x86 instructions and their functions.

Instruction Function

je name if equal(condition code) {EIP=name}; 
EIP–128 <= name < EIP+128

jmp name EIP=name

call name SP=SP–4; M[SP]=EIP+5; EIP=name; 

movw EBX,[EDI+45] EBX=M[EDI+45]

push ESI SP=SP–4; M[SP]=ESI

pop EDI EDI=M[SP]; SP=SP+4

add EAX,#6765 EAX= EAX+6765

test EDX,#42 Set condition code (fl ags) with EDX and 42

movsl M[EDI]=M[ESI];
EDI=EDI+4; ESI=ESI+4

FIGURE 2.39 Some typical x86 instructions and their functions. A list of frequent operations 
appears in Figure 2.40. The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.) 

Conditional branches on the x86 are based on condition codes or fl ags, like 
ARM. Condition codes are set as a side effect of an operation; most are used to 
compare the value of a result to 0. Branches then test the condition codes. PC-
relative branch addresses must be specifi ed in the number of bytes, since unlike 
ARM and MIPS, 80386 instructions are not all 4 bytes in length.

String instructions are part of the 8080 ancestry of the x86 and are not com-
monly executed in most programs. They are often slower than equivalent software 
routines (see the fallacy on page 174).

Figure 2.40 lists some of the integer x86 instructions. Many of the instructions 
are available in both byte and word formats. 

x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 80386 is complex, 
with many different instruction formats. Instructions for the 80386 may vary from 
1 byte, when there are no operands, up to 15 bytes. 

Figure 2.41 shows the instruction for mat for several of the example instructions in 
Figure 2.39. The opcode byte usually contains a bit saying whether the operand is 8 
bits or 32 bits. For some instructions, the opcode may include the addressing mode 
and the register; this is true in many instructions that have the form “register = 
register op immediate.” Other instructions use a “postbyte” or extra opcode byte, 
labeled “mod, reg, r/m,” which contains the addressing mode informa tion. This 
postbyte is used for many of the instructions that address memory. The base plus 
scaled index mode uses a second postbyte, labeled “sc, index, base.”
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172 Chapter 2 Instructions: Language of the Computer

Instruction Meaning

Control Conditional and unconditional branches

jnz, jz Jump if condition to EIP + 8-bit offset; JNE (for JNZ), JE (for JZ) are 
alternative names

jmp Unconditional jump—8-bit or 16-bit offset 

call Subroutine call—16-bit offset; return address pushed onto stack

ret Pops return address from stack and jumps to it

loop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX ≠ 0
Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

push, pop Push source operand on stack; pop operand from stack top to a register

les Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory 
format

cmp Compare source and destination; register-memory format

shl, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fi ll

cbw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

or, xor Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefi x

movs Copies from string source to destination by incrementing ESI and EDI; may be 
repeated

lods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40 Some typical operations on the x86. Many operations use register-memory for mat, 
where either the source or the destination may be memory and the other may be a register or immedi ate 
operand. 

Figure 2.42 shows the encoding of the two postbyte address specifi ers for both 
16-bit and 32-bit mode. Unfortunately, to understand fully which registers and 
which addressing modes are available, you need to see the encoding of all address-
ing modes and sometimes even the encoding of the instructions.

x86 Conclusion

Intel had a 16-bit microprocessor two years before its competitors’ more elegant 
architectures, such as the Motorola 68000, and this head start led to the selection 
of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that 
the x86 is more diffi cult to build than computers like ARM and MIPS, but the large 
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FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte. Many 
instructions contain the 1-bit fi eld w, which says whether the operation is a byte or a double word. The d fi eld in 
MOV is used in instructions that may move to or from memory and shows the direction of the move. The ADD 
instruction requires 32 bits for the immediate fi eld, because in 32-bit mode, the immediates are either 8 bits or 
32 bits. The immediate fi eld in the TEST is 32 bits long because there is no 8-bit immediate for test in 32-bit 
mode. Overall, instructions may vary from 1 to 17 bytes in length. The long length comes from extra 1-byte 
prefi xes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 2 bytes, and 
using the scaled index mode specifi er, which adds another byte. 

a. JE EIP + displacement

b. CALL

c. MOV      EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacement
r/m

Postbyte

Offset

Displacement
Condi-

tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8

market means AMD and Intel can afford more resources to help overcome the 
added complexity. What the x86 lacks in style, it makes up for in quantity, making 
it beauti ful from the right perspective.

Its saving grace is that the most frequently used x86 architectural compo-
nents are not too diffi cult to implement, as AMD and Intel have demonstrated 
by rapidly improving performance of integer programs since 1978. To get that 
performance, compilers must avoid the portions of the architecture that are hard 
to implement fast.
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174 Chapter 2 Instructions: Language of the Computer

  2.18 Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance. 

Part of the power of the Intel x86 is the prefi xes that can modify the execution of 
the following instruction. One prefi x can repeat the following instruction until 
a counter counts down to 0. Thus, to move data in memory, it would seem that 
the natural instruction sequence is to use move with the repeat prefi x to perform 
32-bit memory-to-memory moves. 

An alternative method, which uses the standard instructions found in all com-
puters, is to load the data into the registers and then store the registers back to 
memory. This second version of this program, with the code replicated to reduce 
loop overhead, copies at about 1.5 times faster. A third version, which uses the 
larger fl oating-point registers instead of the integer registers of the x86, copies at 
about 2.0 times faster than the complex move instruction.

Fallacy: Write in assembly language to obtain the highest performance. 

At one time compilers for programming languages produced naïve instruction 
sequences; the increasing sophistication of compilers means the gap between 
compiled code and code produced by hand is closing fast. In fact, to compete 
with current compilers, the assembly language programmer needs to under stand 
the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory 
hierarchy).

reg w = 0 w = 1 r/m mod = 0 mod = 1 mod = 2 mod = 3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

1 CL CX ECX 1 addr=BX+DI =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 fi eld

4 AH SP ESP 4 addr=SI =(sib) SI+disp8 (sib)+disp8 SI+disp8 (sib)+disp32 “

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 “

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 “

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 “

FIGURE 2.42 The encoding of the fi rst address specifi er of the x86: mod, reg, r/m. The fi rst four columns show the encoding 
of the 3-bit reg fi eld, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386). 
The remaining columns explain the mod and r/m fi elds. The meaning of the 3-bit r/m fi eld depends on the value in the 2-bit mod fi eld and the 
address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod = 1 
adding an 8-bit displacement and mod = 2 adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are 1) r/m = 6 
when mod = 1 or mod = 2 in 16-bit mode selects BP plus the displacement; 2) r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects 
EBP plus displacement; and 3) r/m = 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in 
Figure 2.38. When mod = 3, the r/m fi eld indicates a reg ister, using the same encoding as the reg fi eld combined with the w bit. 
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This battle between compilers and assembly language coders is one situa tion 
in which humans are losing ground. For example, C offers the program mer a 
chance to give a hint to the compiler about which variables to keep in registers 
versus spilled to memory. When compilers were poor at register allocation, such 
hints were vital to performance. In fact, some old C text books spent a fair amount 
of time giving examples that effectively use regis ter hints. Today’s C compilers 
generally ignore such hints, because the compiler does a better job at allocation 
than the programmer does.

Even if writing by hand resulted in faster code, the dangers of writing in assembly 
language are the longer time spent coding and debugging, the loss in portability, 
and the diffi culty of maintaining such code. One of the few widely accepted axioms 
of software engineering is that coding takes longer if you write more lines, and 
it clearly takes many more lines to write a program in assembly language than 
in C or Java. Moreover, once it is coded, the next danger is that it will become a 
popular program. Such programs always live longer than expected, meaning that 
someone will have to update the code over several years and make it work with new 
releases of operating systems and new models of machines. Writing in higher-level 
language instead of assembly language not only allows future compilers to tailor 
the code to future machines, it also makes the software easier to maintain and 
allows the program to run on more brands of computers. 

Fallacy: The importance of commercial binary compatibility means successful 
instruction sets don’t change.

While backwards binary compatibility is sacrosanct, Figure 2.43 shows that the x86 
architecture has grown dramatically. The average is more than one instruc tion per 
month over its 30-year lifetime!

Pitfall: Forgetting that sequential word addresses in machines with byte addressing 
do not differ by one. 

Many an assembly language programmer has toiled over errors made by assuming 
that the address of the next word can be found by incrementing the address in a 
register by one instead of by the word size in bytes. Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defi ning procedure. 

A common mistake in dealing with pointers is to pass a result from a  procedure that 
includes a pointer to an array that is local to that procedure. Following the stack 
discipline in Figure 2.12, the memory that contains the local array will be reused as 
soon as the procedure returns. Pointers to automatic variables can lead to chaos.
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176 Chapter 2 Instructions: Language of the Computer

  2.19 Concluding Remarks

The two principles of the stored-program computer are the use of instructions that 
are indistinguishable from numbers and the use of alterable memory for programs. 
These principles allow a single machine to aid environmental scientists, fi nancial 
advisers, and novelists in their specialties. The selection of a set of instructions that 
the machine can understand demands a delicate balance among the number of 
instructions needed to execute a program, the number of clock cycles needed by 
an instruction, and the speed of the clock. As illustrated in this chapter, four design 
principles guide the authors of instruction sets in making that delicate balance: 

1. Simplicity favors regularity. Regularity motivates many features of the MIPS 
instruction set: keeping all instructions a single size, always requiring three 
register operands in arithmetic instructions, and keeping the register fi elds 
in the same place in each instruction format.

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 registers 
rather than many more. 

Less is more.

Robert Browning, 
Andrea del Sarto, 1855
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FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to 
some of these extensions, this rapid change also increases the diffi culty for other companies to try to build 
compatible processors. 
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3. Make the common case fast. Examples of making the common MIPS case 
fast include PC-relative addressing for conditional branches and immediate 
addressing for larger constant operands.

4. Good design demands good compromises. One MIPS example was the com-
promise between providing for larger addresses and constants in instruc-
tions and keeping all instructions the same length. 

Above this machine level is assembly language, a language that humans can read. 
The assembler translates it into the binary numbers that machines can understand, 
and it even “extends” the instruction set by creating symbolic instruc tions that 
aren’t in the hardware. For instance, constants or addresses that are too big are 
broken into properly sized pieces, common variations of instructions are given 
their own name, and so on. Figure 2.44 lists the MIPS instructions we have covered 
so far, both real and pseudoinstructions.

Each category of MIPS instructions is associated with constructs that appear in 
programming languages:

The arithmetic instructions correspond to the operations found in assign-
ment statements. 

Data transfer instructions are most likely to occur when dealing with data 
structures like arrays or structures. 

The conditional branches are used in if statements and in loops. 

The unconditional jumps are used in procedure calls and returns and for 
case/switch statements.

These instructions are not born equal; the popularity of the few dominates the 
many. For example, Figure 2.45 shows the popularity of each class of instructions 
for SPEC2006. The varying popularity of instructions plays an important role in 
the chapters about datapath, control, and pipelining.

After we explain computer arithmetic in Chapter 3, we reveal the rest of the 
MIPS instruction set architecture.

■

■

■

■

 2.19 Concluding Remarks 177

03-Ch02-P374493.indd   17703-Ch02-P374493.indd   177 9/30/08   3:23:39 PM9/30/08   3:23:39 PM



178 Chapter 2 Instructions: Language of the Computer

 MIPS instructions Name Format Pseudo MIPS Name Format

add add R move move R

subtract sub R multiply mult R

add immediate addi I multiply immediate multi I

load word lw I load immediate li I

store word sw I branch less than blt I

load half lh I branch less than 
or equal ble I

load half unsigned lhu I

store half sh I branch greater than bgt I

load byte lb I branch greater than 
or equal bge I

load byte unsigned lbu I

store byte sb I

load linked ll I

store conditional sc I

load upper immediate lui I

and and R

or or R

nor nor R

and immediate andi I

or immediate ori I

shift left logical sll R

shift right logical srl R

branch on equal beq I

branch on not equal bne I

set less than slt R

set less than immediate slti I

set less than immediate 
unsigned

sltiu I

jump j J

jump register jr R

jump and link jal J

FIGURE 2.44 The MIPS instruction set covered so far, with the real MIPS instructions 
on the left and the pseudoinstructions on the right. Appendix B (Section B.10) describes the 
full MIPS architecture. Figure 2.1 shows more details of the MIPS architecture revealed in this chapter. The 
information given here is also found in Columns 1 and 2 of the MIPS Reference Data Card at the front of 
the book. 
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Instruction class MIPS examples HLL correspondence

Frequency

Integer Ft. pt.

Arithmetic add, sub, addi Operations in assignment statements 16% 48%

Data transfer lw, sw, lb, lbu, lh, 
lhu, sb, lui

References to data structures, such as arrays 35% 36%

Logical and, or, nor, andi, ori, 
sll, srl

0perations in assignment statements 12%  4%

Conditional branch beq, bne, slt, slti, 
sltiu

If statements and loops 34%  8%

Jump j, jr, jal Procedure calls, returns, and case/switch statements  2%  0%

FIGURE 2.45 MIPS instruction classes, examples, correspondence to high-level program language constructs, and 
percent age of MIPS instructions executed by category for the average SPEC2006 benchmarks. Figure 3.26 in Chapter 3 
shows average percent age of the individual MIPS instructions executed. 

\   Historical Perspective and 
Further Reading

This section surveys the history of instruction set architectures (ISAs) over 
time, and we give a short history of programming languages and compilers. 
ISAs include accumulator architectures, general-purpose register architectures, 
stack architectures, and a brief history of ARM and the x86. We also review the 
contro versial subjects of high-level-language computer architectures and reduced 
instruction set computer architectures. The history of programming languages 
includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C++, and Java, 
and the history of compilers includes the key milestones and the pioneers who 
achieved them. The rest of this section is on the CD.

 2.21 Exercises
Contributed by John Oliver of Cal Poly, San Luis Obispo, with contributions from Nicole 
Kaiyan (University of Adelaide) and Milos Prvulovic (Georgia Tech)

Appendix B describes the MIPS simulator, which is helpful for these exercises. 
Although the simulator accepts pseudoinstructions, try not to use pseudo-
instructions for any exercises that ask you to produce MIPS code. Your goal should 
be to learn the real MIPS instruction set, and if you are asked to count instructions, 
your count should refl ect the actual instructions that will be executed and not the 
pseudoinstructions.

There are some cases where pseudoinstructions must be used (for example, the 
la instruction when an actual value is not known at assembly time). In many cases, 

2.20 
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180 Chapter 2 Instructions: Language of the Computer

they are quite convenient and result in more readable code (for example, the li 
and move instructions). If you choose to use pseudoinstructions for these reasons, 
please add a sentence or two to your solution stating which pseudoinstructions 
you have used and why.

Exercise 2.1
The following problems deal with translating from C to MIPS. Assume that the 
variables g, h, i, and j are given and could be considered 32-bit integers as declared 
in a C program.

a. f = g + h + i + j;

b. f = g + (h + 5);

2.1.1 [5] <2.2> For the C statements above, what is the corresponding MIPS 
assembly code? Use a minimal number of MIPS assembly instructions. 

2.1.2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement? 

2.1.3 [5] <2.2> If the variables f, g, h, i, and j have values 1, 2, 3, 4, and 5, 
respectively, what is the end value of f? 

The following problems deal with translating from MIPS to C. Assume that the 
variables g, h, i, and j are given and could be considered 32-bit integers as declared 
in a C program.

a. add  f, g, h

b. addi f, f, 1
add  f, g, h

2.1.4 [5] <2.2> For the MIPS statements above, what is a corresponding 
C statement? 

2.1.5 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respectively, 
what is the end value of f? 

Exercise 2.2
The following problems deal with translating from C to MIPS. Assume that the 
variables g, h, i, and j are given and could be considered 32-bit integers as declared 
in a C program.
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a. f = f + f + i;

b. f = g + (j + 2);

2.2.1 [5] <2.2> For the C statements above, what is the corresponding MIPS 
assembly code? Use a minimal number of MIPS assembly instructions. 

2.2.2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement? 

2.2.3 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respectively, 
what is the end value of f?

The following problems deal with translating from MIPS to C. For the following 
exercise, assume that the variables g, h, i, and j are given and could be considered 
32-bit integers as declared in a C program. 

a. add  f, f, h

b. sub  f, $0, f
addi f, f, 1

2.2.4 [5] <2.2> For the MIPS statements above, what is a corresponding C 
statement? 

2.2.5 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respectively, 
what is the end value of f? 

Exercise 2.3 
The following problems deal with translating from C to MIPS. Assume that the 
variables g, h, i, and j are given and could be considered 32-bit integers as declared 
in a C program.

a. f = f + g + h + i + j + 2;

b. f = g – (f + 5);

2.3.1 [5] <2.2> For the C statements above, what is the corresponding MIPS 
assembly code? Use a minimal number of MIPS assembly instructions. 

2.3.2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement? 
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182 Chapter 2 Instructions: Language of the Computer

2.3.3 [5] <2.2> If the variables f, g, h, i, and j have values 1, 2, 3, 4, and 5, 
respectively, what is the end value of f?

The following problems deal with translating from MIPS to C. Assume that the 
variables g, h, i, and j are given and could be considered 32-bit integers as declared 
in a C program.

a. add  f, –g, h

b. addi h, f, 1
sub  f, g, h

2.3.4 [5] <2.2> For the MIPS statements above, what is a corresponding 
C statement? 

2.3.5 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respectively, 
what is the end value of f? 

Exercise 2.4
The following problems deal with translating from C to MIPS. Assume that the 
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 
respectively. Assume that the base address of the arrays A and B are in registers $s6 
and $s7, respectively. 

a. f = g + h + B[4];

b. f = g – A[B[4]];

2.4.1 [10] <2.2, 2.3> For the C statements above, what is the corresponding MIPS 
assembly code? 

2.4.2 [5] <2.2, 2.3> For the C statements above, how many MIPS assembly 
instructions are needed to perform the C statement? 

2.4.3 [5] <2.2, 2.3> For the C statements above, how many different registers are 
needed to carry out the C statement? 

The following problems deal with translating from MIPS to C. Assume that the 
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 
respectively. Assume that the base address of the arrays A and B are in registers $s6 
and $s7, respectively.
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a. add $s0, $s0, $s1
add $s0, $s0, $s2
add $s0, $s0, $s3
add $s0, $s0, $s4

b. lw $s0, 4($s6) 

2.4.4 [10] <2.2, 2.3> For the MIPS assembly instructions above, what is the 
corresponding C statement? 

2.4.5 [5] <2.2, 2.3> For the MIPS assembly instructions above, rewrite the 
assembly code to minimize the number of MIPS instructions (if possible) needed 
to carry out the same function. 

2.4.6 [5] <2.2, 2.3> How many registers are needed to carry out the MIPS assem-
bly as written above? If you could rewrite the code above, what is the minimal 
number of registers needed? 

Exercise 2.5
In the following problems, we will be investigating memory operations in the 
context of a MIPS processor. The table below shows the values of an array stored 
in memory. 

a. Address
12
8
4
0 

Data
1
6
4 
2

b. Address
16
12
8
4
0 

Data
1
2
3
4
5

2.5.1 [10] <2.2, 2.3> For the memory locations in the table above, write C code 
to sort the data from lowest-to-highest, placing the lowest value in the smallest 
memory location shown in the fi gure. Assume that the data shown represents the 
C variable called Array, which is an array of type int. Assume that this particular 
machine is a byte-addressable machine and a word consists of 4 bytes. 

2.5.2 [10] <2.2, 2.3> For the memory locations in the table above, write MIPS 
code to sort the data from lowest-to-highest, placing the lowest value in the small-
est memory location. Use a minimum number of MIPS instructions. Assume the 
base address of Array is stored in register $s6.

 2.21 Exercises 183

03-Ch02-P374493.indd   18303-Ch02-P374493.indd   183 9/30/08   3:23:42 PM9/30/08   3:23:42 PM



184 Chapter 2 Instructions: Language of the Computer

2.5.3 [5] <2.2, 2.3> To sort the array above, how many instructions are required 
for the MIPS code? If you are not allowed to use the immediate fi eld in lw and sw 
instructions, how many MIPS instructions do you need? 

The following problems explore the translation of hexadecimal numbers to other 
number formats.

a. 0x12345678

b. 0xbeadf00d

2.5.4 [5] <2.3> Translate the hexadecimal numbers above into decimal. 

2.5.5 [5] <2.3> Show how the data in the table would be arranged in memory 
of a little-endian and a big-endian machine. Assume the data is stored starting at 
address 0. 

Exercise 2.6
The following problems deal with translating from C to MIPS. Assume that the 
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 
respectively. Assume that the base address of the arrays A and B are in registers $s6 
and $s7, respectively. 

a. f = –g + h + B[1];

b. f = A[B[g]+1];

2.6.1 [10] <2.2, 2.3> For the C statements above, what is the corresponding MIPS 
assembly code? 

2.6.2 [5] <2.2, 2.3> For the C statements above, how many MIPS assembly 
instructions are needed to perform the C statement? 

2.6.3 [5] <2.2, 2.3> For the C statements above, how many registers are needed 
to carry out the C statement using MIPS assembly code? 

The following problems deal with translating from MIPS to C. Assume that the 
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and $s4, 
respectively. Assume that the base address of the arrays A and B are in registers $s6 
and $s7, respectively.
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a. add $s0, $s0, $s1 
add $s0, $s3, $s2 
add $s0, $s0, $s3 

b. addi $s6, $s6, –20
add  $s6, $s6, $s1
lw   $s0, 8($s6)

2.6.4 [5] <2.2, 2.3> For the MIPS assembly instructions above, what is the 
corresponding C statement? 

2.6.5 [5] <2.2, 2.3> For the MIPS assembly above, assume that the registers $s0, 
$s1, $s2, $s3, contain the values 10, 20, 30, and 40, respectively. Also, assume 
that register $s6 contains the value 256, and that memory contains the following 
values:

Address Value 

256 100

260 200

264 300

Find the value of $s0 at the end of the assembly code. 

2.6.6 [10] <2.3, 2.5> For each MIPS instruction, show the value of the op, rs, and 
rt fi elds. For I-type instructions, show the value of the immediate fi eld, and for the 
R-type instructions, show the value of the rd fi eld. 

Exercise 2.7 
The following problems explore number conversions from signed and unsigned 
binary number to decimal numbers.

a. 1010 1101 0001 0000 0000 0000 0000 0010two

b. 1111 1111 1111 1111 1011 0011 0101 0011two

2.7.1 [5] <2.4> For the patterns above, what base 10 number does it represent, 
assuming that it is a two’s complement integer? 

2.7.2 [5] <2.4> For the patterns above, what base 10 number does it represent, 
assuming that it is an unsigned integer?
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186 Chapter 2 Instructions: Language of the Computer

2.7.3 [5] <2.4> For the patterns above, what hexadecimal number does it 
represent? 

The following problems explore number conversions from decimal to signed and 
unsigned binary numbers.

a. 2147483647ten

b. 1000ten

2.7.4 [5] <2.4> For the base ten numbers above, convert to two’s complement 
binary. 

2.7.5 [5] <2.4> For the base ten numbers above, convert to two’s complement 
hexadecimal. 

2.7.6 [5] <2.4> For the base ten numbers above, convert the negated values from 
the table to two’s complement hexadecimal. 

Exercise 2.8 
The following problems deal with sign extension and overfl ow. Registers $s0 and 
$s1 hold the values as shown in the table below. You will be asked to perform a 
MIPS operation on these registers and show the result. 

a. $s0 = 70000000sixteen, $s1 = 0x0FFFFFFFsixteen

b. $s0 = 0x40000000sixteen, $s1 = 0x40000000sixteen

2.8.1 [5] <2.4> For the contents of registers $s0 and $s1 as specifi ed above, what 
is the value of $t0 for the following assembly code: 

add $t0, $s0, $s1

Is the result in $t0 the desired result, or has there been overfl ow? 

2.8.2 [5] <2.4> For the contents of registers $s0 and $s1 as specifi ed above, what 
is the value of $t0 for the following assembly code: 

sub $t0, $s0, $s1

Is the result in $t0 the desired result, or has there been overfl ow? 
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2.8.3 [5] <2.4> For the contents of registers $s0 and $s1 as specifi ed above, what 
is the value of $t0 for the following assembly code: 

add $t0, $s0, $s1
add $t0, $t0, $s0

Is the result in $t0 the desired result, or has there been overfl ow? 

In the following problems, you will perform various MIPS operations on a pair of 
registers, $s0 and $s1. Given the values of $s0 and $s1 in each of the questions 
below, state if there will be overfl ow. 

a. add $s0, $s0, $s1

b. sub $s0, $s0, $s1
sub $s0, $s0, $s1

2.8.4 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 = 0x10000000. 
For the table above, will there be overfl ow? 

2.8.5 [5] <2.4> Assume that register $s0 = 0x40000000 and $s1 = 0x20000000. 
For the table above, will there be overfl ow? 

2.8.6 [5] <2.4> Assume that register $s0 = 0x8FFFFFFF and $s1 = 0xD0000000. 
For the table above, will there be overfl ow? 

Exercise 2.9 
The table below contains various values for register $s1. You will be asked to 
evaluate if there would be overfl ow for a given operation.

a. 2147483647ten

b. 0xD0000000sixteen

2.9.1 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value as 
given in the table. If the instruction: add $s0, $s0, $s1 is executed, will there be 
overfl ow? 

2.9.2 [5] <2.4> Assume that register $s0 = 0x80000000 and $s1 has the value as 
given in the table. If the instruction: sub $s0, $s0, $s1 is executed, will there be 
overfl ow? 
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188 Chapter 2 Instructions: Language of the Computer

2.9.3 [5] <2.4> Assume that register $s0 = 0x7FFFFFFF and $s1 has the value 
as given in the table. If the instruction: sub $s0, $s0, $s1 is executed, will there be 
overfl ow? 

The table below contains various values for register $s1. You will be asked to 
evaluate if there would be overfl ow for a given operation. 

a. 1010 1101 0001 0000 0000 0000 0000 0010two

b. 1111 1111 1111 1111 1011 0011 0101 0011two

2.9.4 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value as 
given in the table. If the instruction: add $s0, $s0, $s1 is executed, will there be 
overfl ow? 

2.9.5 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value 
as given in the table. If the instruction: add $s0, $s0, $s1 is executed, what is the 
result in hex? 

2.9.6 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value as 
given in the table. If the instruction: add $s0, $s0, $s1 is executed, what is the result 
in base ten? 

Exercise 2.10 
In the following problems, the data table contains bits that represent the opcode 
of an instruction. You will be asked to translate the entries into assembly code and 
determine what format of MIPS instruction the bits represent. 

a. 1010 1110 0000 1011 0000 0000 0000 0100two

b. 1000 1101 0000 1000 0000 0000 0100 0000two

2.10.1 [5] <2.5> For the binary entries above, what instruction do they 
represent? 

2.10.2 [5] <2.5> What type (I-type, R-type) instruction do the binary entries 
above represent? 

2.10.3 [5] <2.4, 2.5> If the binary entries above were data bits, what number 
would they represent in hexadecimal?
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In the following problems, the data table contains MIPS instructions. You will be 
asked to translate the entries into the bits of the opcode and determine what is the 
MIPS instruction format. 

a. add $t0, $t0, $zero

b. lw $t1, 4($s3)

2.10.4 [5] <2.4, 2.5> For the instructions above, show the hexadecimal 
representation of these instructions. 

2.10.5 [5] <2.5> What type (I-type, R-type) instruction do the instructions 
above represent? 

2.10.6 [5] <2.5> What is the hexadecimal representation of the opcode, rs, 
and rt fi elds in this instruction? For R-type instructions, what is the hexadecimal 
representation of the rd and funct fi elds? For I-type instructions, what is the 
hexadecimal representation of the immediate fi eld? 

Exercise 2.11 
In the following problems, the data table contains bits that represent the opcode 
of an instruction. You will be asked to translate the entries into assembly code and 
determine what format of MIPS instruction the bits represent. 

a. 0xAE0BFFFC

b. 0x8D08FFC0

2.11.1 [5] <2.4, 2.5> What binary number does the above hexadecimal number 
represent? 

2.11.2 [5] <2.4, 2.5> What decimal number does the above hexadecimal number 
represent? 

2.11.3 [5] <2.5> What instruction does the above hexadecimal number 
represent? 

In the following problems, the data table contains the values of various fi elds of 
MIPS instructions. You will be asked to determine what the instruction is, and 
fi nd the MIPS format for the instruction. 
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190 Chapter 2 Instructions: Language of the Computer

a. op=0, rs=1, rt=2, rd=3, shamt=0, funct=32

b. op=0x2B, rs=0x10, rt=0x5, const=0x4

2.11.4 [5] <2.5> What type (I-type, R-type) instruction do the instructions 
above represent? 

2.11.5 [5] <2.5> What is the MIPS assembly instruction described above? 

2.11.6 [5] <2.4, 2.5> What is the binary representation of the instructions 
above? 

Exercise 2.12 
In the following problems, the data table contains various modifi cations that could 
be made to the MIPS instruction set architecture. You will investigate the impact of 
these changes on the instruction format of the MIPS architecture.

a. 8 registers

b. 10 bit immediate constants

2.12.1 [5] <2.5> If the instruction set of the MIPS processor is modifi ed, the 
instruction format must also be changed. For each of the suggested changes above, 
show the size of the bit fi elds of an R-type format instruction. What is the total 
number of bits needed for each instruction? 

2.12.2 [5] <2.5> If the instruction set of the MIPS processor is modifi ed, the 
instruction format must also be changed. For each of the suggested changes above, 
show the size of the bit fi elds of an I-type format instruction. What is the total 
number of bits needed for each instruction? 

2.12.3 [5] <2.5, 2.10> Why could the suggested change in the table above 
decrease the size of a MIPS assembly program? Why could the suggested change 
in the table above increase the size of a MIPS assembly program? 

In the following problems, the data table contains hexadecimal values. You will be 
asked to determine what MIPS instruction the value represents, and fi nd the MIPS 
instruction format.

a. 0x01090010

b. 0x8D090012

2.12.4 [5] <2.5> For the entries above, what is the value of the number in 
decimal? 
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2.12.5 [5] <2.5> For the hexadecimal entries above, what instruction do they 
represent? 

2.12.6 [5] <2.4, 2.5> What type (I-type, R-type) instruction do the binary entries 
above represent? What is the value of the op fi eld and the rt fi eld? 

Exercise 2.13
In the following problems, the data table contains the values for registers $t0 
and $t1. You will be asked to perform several MIPS logical operations on these 
registers. 

a. $t0 = 0x55555555, $t1 = 0x12345678

b. $t0 = 0xBEADFEED, $t1 = 0xDEADFADE

2.13.1 [5] <2.6> For the lines above, what is the value of $t2 for the following 
sequence of instructions: 

sll $t2, $t0, 4
or $t2, $t2, $t1

2.13.2 [5] <2.6> For the values in the table above, what is the value of $t2 for the 
following sequence of instructions: 

sll $t2, $t0, 4
andi $t2, $t2, –1

2.13.3 [5] <2.6> For the lines above, what is the value of $t2 for the following 
sequence of instructions:

srl $t2, $t0, 3
andi $t2, $t2, 0xFFEF

In the following exercise, the data table contains various MIPS logical operations. 
You will be asked to fi nd the result of these operations given values for registers 
$t0 and $t1.

a. sll $t2, $t0, 1
or $t2, $t2, $t1 

b. srl $t2, $t0, 1
andi $t2, $t2, 0x00F0

2.13.4 [5] <2.6> Assume that $t0 = 0x0000A5A5 and $t1 = 00005A5A. What is 
the value of $t2 after the two instructions in the table? 
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2.13.5 [5] <2.6> Assume that $t0 = 0xA5A50000 and $t1 = A5A50000. What is 
the value of $t2 after the two instructions in the table? 

2.13.6 [5] <2.6> Assume that $t0 = 0xA5A5FFFF and $t1 = A5A5FFFF. What is 
the value of $t2 after the two instructions in the table? 

Exercise 2.14 
The following fi gure shows the placement of a bit fi eld in register $t0.

Field

31 – i bits i – j bits j bits

In the following problems, you will be asked to write MIPS instructions to extract 
the bits “Field” from register $t0 and place them into register $t1 at the location 
indicated in the following table.

a. 

0 0 0 … 0 0 0 Field

b. 

0 0 0 … 0 0 0 Field 0 0 0 … 0 0 0

2.14.1 [20] <2.6> Find the shortest sequence of MIPS instructions that extracts 
a fi eld from $t0 for the constant values i = 22 and j = 5 and places the fi eld into 
$t1 in the format shown in the data table. 

2.14.2 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a 
fi eld from $t0 for the constant values i = 4 and j = 0 and places the fi eld into $t1 
in the format shown in the data table. 

2.14.3 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a 
fi eld from $t0 for the constant values i = 31 and j = 28 and places the fi eld into $t1 
in the format shown in the data table. 

In the following problems, you will be asked to write MIPS instructions to extract 
the bits “Field” from register $t0 shown in the fi gure and place them into register 
$t1 at the location indicated in the following table. The bits shown as “XXX” are to 
remain unchanged. 

31 i j 0

31 i – j

31 14 + i – j bits 14 0
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a. 

X X X … X X X Field

b. 

X X X … X X X Field X X X … X X X

2.14.4 [20] <2.6> Find the shortest sequence of MIPS instructions that extracts 
a fi eld from $t0 for the constant values i = 17 and j = 11 and places the fi eld into 
$t1 in the format shown in the data table. 

2.14.5 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a 
fi eld from $t0 for the constant values i = 5 and j = 0 and places the fi eld into $t1 
in the format shown in the data table. 

2.14.6 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a 
fi eld from $t0 for the constant values i = 31 and j = 29 and places the fi eld into $t1 
in the format shown in the data table. 

Exercise 2.15
For these problems, the table holds some logical operations that are not included in 
the MIPS instruction set. How can these instructions be implemented?

a. andn $t1, $t2, $t3            // bit-wise AND of $t2, !$t3

b. xnor $t1, $t2, $t3            // bit-wise exclusive-NOR

2.15.1 [5] <2.6> The logical instructions above are not included in the MIPS 
instruction set, but are described above. If the value of $t2 = 0x00FFA5A5 and the 
value of $t3 = 0xFFFF003C, what is the result in $t1? 

2.15.2 [10] <2.6> The logical instructions above are not included in the 
MIPS instruction set, but can be synthesized using one or more MIPS assembly 
instructions. Provide a minimal set of MIPS instructions that may be used in place 
of the instructions in the table above. 

2.15.3 [5] <2.6> For your sequence of instructions in 2.15.2, show the bit-level 
representation of each instruction.

Various C-level logical statements are shown in the table below. In this exercise, you 
will be asked to evaluate the statements and implement these C statements using 
MIPS assembly instructions. 

31 i – j

31 14 + i – j bits 14 0
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a. A = B & C[0];

b. A = A ? B : C[0]

2.15.4 [5] <2.6> The table above shows different C statements that use logical 
operators. If the memory location at C[0] contains the integer value 0x00001234, 
and the initial integer value of A and B are 0x00000000 and 0x00002222, what is 
the result value of A? 

2.15.5 [5] <2.6> For the C statements in the table above, write a minimal sequence 
of MIPS assembly instructions that does the identical operation. 

2.15.6 [5] <2.6> For your sequence of instructions in 2.15.5, show the bit-level 
representation of each instruction.

Exercise 2.16 
For these problems, the table holds various binary values for register $t0. Given the 
value of $t0, you will be asked to evaluate the outcome of different branches.

a. 1010 1101 0001 0000 0000 0000 0000 0010two

b. 1111 1111 1111 1111 1111 1111 1111 1111two

2.16.1 [5] <2.7> Suppose that register $t0 contains a value from above and $t1 
has the value 

0011 1111 1111 1000 0000 0000 0000 0000two

What is the value of $t2 after the following instructions?

      slt  $t2, $t0, $t1 
      beq  $t2, $zero, ELSE 
      j    DONE
ELSE: addi $t2, $zero, 2
DONE:

2.16.2 [5] <2.7> Suppose that register $t0 contains a value from the table above 
and is compared against the value X, as used in the MIPS instruction below. For 
what values of X, if any, will $t2 be equal to 1? 

slti $t2, $t0, X

2.16.3 [5] <2.7> Suppose the program counter (PC) is set to 0x0000 0020. Is 
it possible to use the jump (j) MIPS assembly instruction to set the PC to the 
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address as shown in the data table above? Is it possible to use the branch-on-equal 
(beq) MIPS assembly instruction to set the PC to the address as shown in the data 
table above? 

For these problems, the table holds various binary values for register $t0. Given the 
value of $t0, you will be asked to evaluate the outcome of different branches. 

a. 0x00001000

b. 0x20001400

2.16.4 [5] <2.7> Suppose that register $t0 contains a value from above. What is 
the value of $t2 after the following instructions?

      slt  $t2, $t0, $t0 
      bne  $t2, $zero, ELSE 
      j    DONE
ELSE: addi $t2, $t2, 2
DONE:

2.16.5 [5] <2.6, 2.7> Suppose that register $t0 contains a value from above. 
What is the value of $t2 after the following instructions? 

sll $t0, $t0, 2
slt $t2, $t0, $zero

2.16.6 [5] <2.7> Suppose the program counter (PC) is set to 0x2000 0000. Is it 
possible to use the jump (j) MIPS assembly instruction to set the PC to the address 
as shown in the data table above? Is it possible to use the branch-on-equal (beq) 
MIPS assembly instruction to set the PC to the address as shown in the data table 
above? 

Exercise 2.17 
For these problems, several instructions that are not included in the MIPS 
instruction set are shown. 

a. abs  $t2, $t3       # R[rd] = |R[rt]|

b. sgt $t1, $t2, $t3   # R[rd] = (R[rs] > R[rt]) ? 1:0

2.17.1 [5] <2.7> The table above contains some instructions not included in 
the MIPS instruction set and the description of each instruction. Why are these 
instructions not included in the MIPS instruction set. 
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196 Chapter 2 Instructions: Language of the Computer

2.17.2 [5] <2.7> The table above contains some instructions not included in the 
MIPS instruction set and the description of each instruction. If these instructions 
were to be implemented in the MIPS instruction set, what is the most appropriate 
instruction format? 

2.17.3 [5] <2.7> For each instruction in the table above, fi nd the shortest 
sequence of MIPS instructions that performs the same operation. 

For these problems, the table holds MIPS assembly code fragments. You will be 
asked to evaluate each of the code fragments, familiarizing you with the different 
MIPS branch instructions. 

a. LOOP:   slt   $t2, $0, $t1
        bne   $t2, $zero, ELSE
        j     DONE
ELSE:   addi  $s2, $s2, 2
        subi  $t1, $t1, 1
        j     LOOP 
DONE: 

b. LOOP:   addi  $t2, $0, 0xA 
LOOP2:  addi  $s2, $s2, 2
        subi  $t2, $t2, 1
        bne   $t2, $0, LOOP2
        subi  $t1, $t1, 1
        bne   $t1, $0, LOOP
DONE: 

2.17.4 [5] <2.7> For the loops written in MIPS assembly above, assume that the 
register $t1 is initialized to the value 10. What is the value in register $s2 assuming 
the $s2 is initially zero? 

2.17.5 [5] <2.7> For each of the loops above, write the equivalent C code routine. 
Assume that the registers $s1, $s2, $t1, and $t2 are integers A, B, i, and temp, 
respectively. 

2.17.6 [5] <2.7> For the loops written in MIPS assembly above, assume that the 
register $t1 is initialized to the value N. How many MIPS instructions are executed? 

Exercise 2.18 
For these problems, the table holds some C code. You will be asked to evaluate these 
C code statements in MIPS assembly code. 

a. for(i=0; i<10; i++)
    a += b;

b. while (a < 10){
    D[a] = b + a;
    a += 1; 
}
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2.18.1 [5] <2.7> For the table above, draw a control-fl ow graph of the C code. 

2.18.2 [5] <2.7> For the table above, translate the C code to MIPS assembly code. 
Use a minimum number of instructions. Assume that the value a, b, i, j are in 
registers $s0, $s1, $t0, $t1, respectively. Also, assume that register $s2 holds the 
base address of the array D. 

2.18.3 [5] <2.7> How many MIPS instructions does it take to implement the 
C code? If the variables a and b are initialized to 10 and 1 and all elements of D 
are initially 0, what is the total number of MIPS instructions that is executed to 
complete the loop? 

For these problems, the table holds MIPS assembly code fragments. You will be 
asked to evaluate each of the code fragments, familiarizing you with the different 
MIPS branch instructions.

a.        addi  $t1, $0, 100 
LOOP:  lw    $s1, 0($s0)
       add   $s2, $s2, $s1
       addi  $s0, $s0, 4
       subi  $t1, $t1, 1
       bne   $t1, $0, LOOP

b.        addi  $t1, $s0, 400 
LOOP:  lw    $s1, 0($s0)
       add   $s2, $s2, $s1
       lw    $s1, 4($s0)
       add   $s2, $s2, $s1
       addi  $s0, $s0, 8
       bne   $t1, $s0, LOOP

2.18.4 [5] <2.7> What is the total number of MIPS instructions executed? 

2.18.5 [5] <2.7> Translate the loops above into C. Assume that the C-level integer 
i is held in register $t1, $s2 holds the C-level integer called result, and $s0 
holds the base address of the integer MemArray. 

2.18.6 [5] <2.7> Rewrite the loop in MIPS assembly to reduce the number of 
MIPS instructions executed. 

Exercise 2.19
For the following problems, the table holds C code functions. Assume that the fi rst 
function listed in the table is called fi rst. You will be asked to translate these C code 
routines into MIPS Asembly.
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198 Chapter 2 Instructions: Language of the Computer

a. int compare(int a, int b) {
    if (sub(a, b) >= 0) 
        return 1; 
    else 
        return 0;
}
int sub (int a, int b) { 
    return a–b;
}

b. int fi b_iter(int a, int b, int n){ 
    if(n == 0) 
        return b; 
    else 
        return fi b_iter(a+b, a, n–1);
}

2.19.1 [15] <2.8> Implement the C code in the table in MIPS assembly. What is 
the total number of MIPS instructions needed to execute the function? 

2.19.2 [5] <2.8> Functions can often be implemented by compilers “in-line”. 
An in-line function is when the body of the function is copied into the program 
space, allowing the overhead of the function call to be eliminated. Implement an 
“in-line” version of the C code in the table in MIPS assembly. What is the reduction 
in the total number of MIPS assembly instructions needed to complete the function? 
Assume that the C variable n is initialized to 5. 

2.19.3 [5] <2.8> For each function call, show the contents of the stack after the 
function call is made. Assume the stack pointer is originally at addresss 0x7ffffffc, 
and follow the register conventions as specifi ed in Figure 2.11.

The following three problems in this exercise refer to a function f that calls another 
function func. The code for C function func is already compiled in another module 
using the MIPS calling convention from Figure 2.14. The function declaration for func 
is “int func(int a, int b);”. The code for function f is as follows: 

a. int f(int a, int b, int c){
  return func(func(a,b),c);
} 

b. int f(int a, int b, int c){
  return func(a,b)+func(b,c); 
}

2.19.4 [10] <2.8> Translate function f into MIPS assembler, also using the MIPS 
calling convention from Figure 2.14. If you need to use registers $t0 through $t7, 
use the lower-numbered registers fi rst. 

2.19.5 [5] <2.8> Can we use the tail-call optimization in this function? If no, 
explain why not. If yes, what is the difference in the number of executed instructions 
in f with and without the optimization? 
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2.19.6 [5] <2.8> Right before your function f from Problem 2.19.4 returns, what 
do we know about contents of registers $t5, $s3, $ra, and $sp? Keep in mind that 
we know what the entire function f looks like, but for function func we only know 
its declaration. 

Exercise 2.20
This exercise deals with recursive procedure calls. For the following problems, 
the table has an assembly code fragment that computes the factorial of a number. 
However, the entries in the table have errors, and you will be asked to fi x these 
errors. 

a. FACT:  addi  $sp, $sp, –8
       sw    $ra, 4($sp)
       sw    $a0, 0($sp)
       slti  $t0, $a0, 1
       beq   $t0, $0, L1
       addi  $v0, $0, 1
       addi  $sp, $sp, 8
       jr    $ra 

L1:    addi  $a0, $a0, –1
       jal   FACT
       lw    $a0, 4($sp)
       lw    $ra, 0($sp)
       addi  $sp, $sp, 8
       mul   $v0, $a0, $v0
       jr    $ra 

b. FACT:  addi  $sp, $sp, –8
       sw    $ra, 4($sp)
       sw    $a0, 0($sp)
       slti  $t0, $a0, 1
       beq   $t0, $0, L1
       addi  $v0, $0, 1
       addi  $sp, $sp, 8
       jr    $ra 

L1:    addi  $t0, $t0, –1
       jal   FACT
       lw    $a0, 4($sp)
       lw    $ra, 0($sp)
       addi  $sp, $sp, 8
       mul   $v0, $a0, $v0
       jr    $ra 

2.20.1 [5] <2.8> The MIPS assembly program above computes the factorial of 
a given input. The integer input is passed through register $a0, and the result is 
returned in register $v0. In the assembly code, there are a few errors. Correct the 
MIPS errors. 

2.20.2 [10] <2.8> For the recursive factorial MIPS program above, assume that 
the input is 4. Rewrite the factorial program to operate in a nonrecursive manner. 
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200 Chapter 2 Instructions: Language of the Computer

Restrict your register usage to registers $s0-$s7. What is the total number of 
instructions used to execute your solution from 2.20.2 versus the recursive version 
of the factorial program?

2.20.3 [5] <2.8> Show the contents of the stack after each function call, assuming 
that the input is 4. 

For the following problems, the table has an assembly code fragment that computes 
a Fibonacci number. However, the entries in the table have errors, and you will be 
asked to fi x these errors.

a. FIB:  addi  $sp,$sp, –12
      sw    $ra, 0($sp)
      sw    $s1, 4($sp)
      sw    $a0, 8($sp)
      slti  $t0, $a0, 1
      beq   $t0, $0, L1
      addi  $v0,$a0, $0
      j     EXIT

L1:   addi  $a0,$a0, –1
      jal   FIB
      addi  $s1,$v0, $0
      addi  $a0,$a0, –1
      jal   FIB
      add   $v0, $v0, $s1 

EXIT: lw    $ra, 0($sp)
      lw    $a0, 8($sp)
      lw    $s1, 4($sp)
      addi  $sp, $sp, 12
      jr    $ra 

b. FIB:  addi  $sp,$sp, –12
      sw    $ra, 0($sp)
      sw    $s1, 4($sp)
      sw    $a0, 8($sp)
      slti  $t0, $a0, 1
      beq   $t0, $0, L1
      addi  $v0,$a0, $0
      j     EXIT

L1:   addi  $a0,$a0, –1
      jal   FIB
      addi  $s1,$v0, $0
      addi  $a0,$a0, –1
      jal   FIB
      add   $v0, $v0, $s1 

EXIT: lw    $ra, 0($sp)
      lw    $a0, 8($sp)
      lw    $s1, 4($sp)
      addi  $sp, $sp, 12
      jr    $ra 
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2.20.4 [5] <2.8> The MIPS assembly program above computes the Fibonacci of 
a given input. The integer input is passed through register $a0, and the result is 
returned in register $v0. In the assembly code, there are a few errors. Correct the 
MIPS errors. 

2.20.5 [10] <2.8> For the recursive Fibonacci MIPS program above, assume that 
the input is 4. Rewrite the Fibonacci program to operate in a nonrecursive manner. 
Restrict your register usage to registers $s0-$s7. What is the total number of 
instructions used to execute your solution from 2.20.2 versus the recursive version 
of the factorial program? 

2.20.6 [5] <2.8> Show the contents of the stack after each function call, assuming 
that the input is 4. 

Exercise 2.21 
Assume that the stack and the static data segments are empty and that the stack and 
global pointers start at address 0x7fff fffc and 0x1000 8000, respectively. Assume 
the calling conventions as specifi ed in Figure 2.11 and that function inputs are 
passed using registers $a0 and returned in register $v0. Assume that leaf functions 
may only use saved registers.

a. main()
{ 
    leaf_function(1);
}
int leaf_function (int f)
{
    int result; 
    result = f + 1; 
    if (f > 5)
        return result; 
    leaf_function(result);
}

b. int my_global = 100;
main()
{
    int x = 10; 
    int y = 20;
    int z; 
    z = my_function(x, my_global)
} 
int my_function(int x, int y)
{ 
    return x – y; 
}
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202 Chapter 2 Instructions: Language of the Computer

2.21.1 [5] <2.8> Show the contents of the stack and the static data segments after 
each function call. 

2.21.2 [5] <2.8> Write MIPS code for the code in the table above. 

2.21.3 [5] <2.8> If the leaf function could use temporary registers ($t0, $t1, 
etc.), write the MIPS code for the code in the table above.

The following three problems in this exercise refer to this function, written in MIPS 
assembler following the calling conventions from Figure 2.14:

a. f: sub   $s0,$a0,$a3
   sll   $v0,$s0,0x1
   add   $v0,$a2,$v0
   sub   $v0,$v0,$a1
   jr    $ra

b. f: addi   $sp,$sp,8
   sw     $ra,4($sp)
   sw     $s0,0($sp)
   move   $s0,$a2
   jal    g
   add    $v0,$v0,$s0
   lw     $ra,4($sp)
   lw     $s0,0($sp)
   addi   $sp,$sp,–8
   jr     $ra

2.21.4 [10] <2.8> This code contains a mistake that violates the MIPS calling 
convention. What is this mistake and how should it be fi xed? 

2.21.5 [10] <2.8> What is the C equivalent of this code? Assume that the 
function’s arguments are named a, b, c, etc. in the C version of the function. 

2.21.6 [10] <2.8> At the point where this function is called register $a0, $a1, 
$a2, and $a3 have values 1, 100, 1000, and 30, respectively. What is the value 
returned by this function? If another function g is called from f, assume that the 
value returned from g is always 500. 

Exercise 2.22 
This exercise explores ASCII and Unicode conversion. The following table shows 
strings of characters.

a. A byte

b. computer
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2.22.1 [5] <2.9> Translate the strings into decimal ASCII byte values. 

2.22.2 [5] <2.9> Translate the strings into 16-bit Unicode (using hex notation 
and the Basic Latin character set).

The following table shows hexadecimal ASCII character values.

a. 61 64 64

b. 73 68 69 66 74

2.22.3 [5] <2.5, 2.9> Translate the hexadecimal ASCII values to text. 

Exercise 2.23
In this exercise, you will be asked to write a MIPS assembly program that converts 
strings into the number format as specifi ed in the table. 

a. positive integer decimal strings

b. two’s complement hexadecimal integers

2.23.1 [10] <2.9> Write a program in MIPS assembly language to convert an 
ASCII number string with the conditions listed in the table above, to an integer. 
Your program should expect register $a0 to hold the address of a null-terminated 
string containing some combination of the digits 0 through 9. Your program 
should compute the integer value equivalent to this string of digits, then place the 
number in register $v0. If a nondigit character appears anywhere in the string, 
your program should stop with the value –1 in register $v0. For example, if register 
$a0 points to a sequence of three bytes 50ten, 52ten, 0ten (the null-terminated string 
“24”), then when the program stops, register $v0 should contain the value 24ten.

Exercise 2.24
Assume that the register $t1 contains the address 0x1000 0000 and the register 
$t2 contains the address 0x1000 0010.

a. lb $t0, 0($t1)
sw $t0, 0($t2)

b. lb $t0, 0($t1)
sb $t0, 0($t2)

2.24.1 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

1000 0000 12 34 56 78
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What value is stored at the address pointed to by register $t2? Assume that the 
memory location pointed to $t2 is initialized to 0xFFFF FFFF. 

2.24.2 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is: 

1000 0000 80 80 80 80

What value is stored at the address pointed to by register $t2? Assume that the 
memory location pointed to $t2 is initialized to 0x0000 0000. 

2.24.3 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is: 

1000 0000 11 00 00 FF

What value is stored at the address pointed to by register $t2? Assume that the 
memory location pointed to $t2 is initialized to 0x5555 5555. 

Exercise 2.25
In this exercise, you will explore 32-bit constants in MIPS. For the following 
problems, you will be using the binary data in the table below. 

a. 1010 1101 0001 0000 0000 0000 0000 0010two

b. 1111 1111 1111 1111 1111 1111 1111 1111two

2.25.1 [10] <2.10> Write the MIPS code that creates the 32-bit constants listed 
above and stores that value to register $t1 

2.25.2 [5] <2.6, 2.10> If the current value of the PC is 0x00000000, can you use a 
single jump instruction to get to the PC address as shown in the table above? 

2.25.3 [5] <2.6, 2.10> If the current value of the PC is 0x00000600, can you use a 
single branch instruction to get to the PC address as shown in the table above? 

2.25.4 [5] <2.6, 2.10> If the current value of the PC is 0x00400600, can you use a 
single branch instruction to get to the PC address as shown in the table above? 

2.25.5 [10] <2.10> If the immediate fi eld of a MIPS instruction was only 8 bits 
wide, write the MIPS code that creates the 32-bit constants listed above and stores 
that value to register $t1. Do not use the lui instruction. 

For the following problems, you will be using the MIPS assembly code as listed in 
the table. 
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a. lui $t0, 0x1234 
ori $t0, $t0, 0x5678 

b. ori $t0, $t0, 0x5678 
lui $t0, 0x1234

2.25.6 [5] <2.6, 2.10> What is the value of register $t0 after the sequence of code 
in the table above? 

2.25.7 [5] <2.6, 2.10> Write C code that is equivalent to the assembly code in the 
table. Assume that the largest constant that you can load into a 32-bit integer is 16 
bits. 

Exercise 2.26 
For this exercise, you will explore the range of branch and jump instructions in 
MIPS. For the following problems, use the hexadecimal data in the table below. 

a. 0x00001000

b. 0xFFFC0000

2.26.1 [10] <2.6, 2.10> If the PC is at address 0x00000000, how many branch (no 
jump instructions) do you need to get to the address in the table above? 

2.26.2 [10] <2.6, 2.10> If the PC is at address 0x00000000, how many jump 
instructions (no jump register instructions or branch instructions) are required to 
get to the target address in the table above? 

2.26.3 [10] <2.6, 2.10> In order to reduce the size of MIPS programs, MIPS 
designers have decided to cut the immediate fi eld of I-type instructions from 
16 bits to 8 bits. If the PC is at address 0x0000000, how many branch instructions 
are needed to set the PC to the address in the table above? 

For the following problems, you will be using making modifi cations to the MIPS 
instruction set architecture.

a. 8 registers

b. 10 bit immediate/address fi eld

2.26.4 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modifi ed, 
the instruction format must also be changed. For each of the suggested changes 
above, what is the impact on the range of addresses in a beq instruction? Assume 
that all instructions remain 32 bits long and any changes made to the instruction 
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206 Chapter 2 Instructions: Language of the Computer

format of I-type instructions only increase/decrease the immediate fi eld of the beq 
instruction. 

2.26.5 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modifi ed, 
the instruction format must also be changed. For each of the suggested changes 
above, what is the impact on the range of addresses a jump instruction? Assume that 
instructions remain 32 bits long and any changes made to the instruction format of 
J-type instructions only impact the address fi eld of the jump instruction. 

2.26.6 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modifi ed, 
the instruction format must also be changed. For each of the suggested changes 
above, what is the impact on the range of addresses a jump register instruction, 
assuming that each instruction must be 32 bits. 

Exercise 2.27 
In the following problems, you will be using exploring different addressing modes 
in the MIPS instruction set architecture. These different addressing modes are 
listed in the table below. 

a. Register Addressing

b. PC-relative Addressing

2.27.1 [5] <2.10> In the table above are different addressing modes of the MIPS 
instruction set. Give an example MIPS instructions that shows the MIPS addressing 
mode. 

2.27.2 [5] <2.10> For the instructions in 2.27.1, what is the instruction format 
type used for the given instruction?

2.27.3 [5] <2.10> List benefi ts and drawbacks of a particular MIPS addressing 
mode. Write MIPS code that shows these benefi ts and drawbacks. 

In the following problems, you will be using the MIPS assembly code as listed below 
to explore the tradeoffs of the immediate fi eld in the MIPS I-type instructions. 

a. 0x00000000           lui  $s0, 100 
0x00000004           ori  $s0, $s0, 40 

b. 0x00000100           addi $t0, $0, 0x0000
0x00000104           lw     $t1, 0x4000($t0)

2.27.4 [15] <2.10> For the MIPS statements above, show the bit-level instruction 
representation of each of the instructions in hexadecimal. 
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2.27.5 [10] <2.10> By reducing the size of the immediate fi elds of the I-type 
and J-type instructions, we can save on the number of bits needed to represent 
instructions. If the immediate fi eld of I-type instructions were 8 bits and the 
immediate fi eld of J-type instructions were 18 bits, rewrite the MIPS code above to 
refl ect this change. Avoid using the lui instruction. 

2.27.6 [5] <2.10> How many extra instructions are needed to execute your code 
in 2.27.5 MIPS statements in the table versus the code shown in the table above? 

Exercise 2.28
The following table contains MIPS assembly code for a lock. 

try:  MOV     R3,R4 
      MOV     R6,R7 
      LL      R2,0(R2) 
      LL      R5,0(R1) 
      SC      R3,0(R1)
      SC      R6,0(R1)
      BEQZ    R3,try
      MOV     R4,R2 
      MOV     R7,R5

2.28.1 [5] <2.11> For each test and fail of the store conditional, how many 
instructions need to be executed?

2.28.2 [5] <2.11> For the load locked/store conditional code above, explain why 
this code may fail.

2.28.3 [15] <2.11> Rewrite the code above so that the code may operate correct. 
Be sure to avoid any race conditions. 

Each entry in the following table has code and also shows the contents of various 
registers. The notation, “($s1)” shows the contents of a memory location pointed 
to by register $s1. The assembly code in each table is executed in the cycle shown 
on parallel processors with a shared memory space. 

a.

Processor 1 Processor 2 Cycle

Processor 1 MEM Processor 2

$t1 $t0 ($s1) $t1 $t0

0 1 2 99 30 40

ll $t1, 0($s1) ll $t1, 0($s1) 1

sc $t0, 0($s1) 2

sc $t0, 0($s1) 3
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208 Chapter 2 Instructions: Language of the Computer

b.

Processor 1 Processor 2 Cycle

Processor 1 MEM Processor 2

$s4 $t1 $t0 ($s1) $s4 $t1 $t0

0 2 3 4 99 10 20 30

try: add $t0, $0, $s4 1

try: add $t0, $0, $s4      ll $t1, 0($s1) 2

     ll $t1, 0($s1) 3

     sc $t0, 0($s1) 4

     beqz $t0, try       sc $t0, 0($s1) 5

     add $s4, $0, $t1       beqz $t0, try 6

2.28.4 [5] <2.11> Fill out the table with the value of the registers for each given 
cycle. 

Exercise 2.29
The fi rst three problems in this exercise refer to a critical section of the form 

lock(lk);
operation
unlock(lk);

where the “operation” updates the shared variable shvar using the local (nonshared) 
variable x as follows: 

Operation 

a. shvar=shvar+x; 

b. shvar=min(shvar,x); 

2.29.1 [10] <2.11> Write the MIPS assembler code for this critical section, 
assuming that the address of the lk variable is in $a0, the address of the shvar 
variable is in $a1, and the value of variable x is in $a2. Your critical section should 
not contain any function calls, i.e., you should include the MIPS instructions 
for lock(), unlock(), max(), and min() operations. Use ll/sc instructions 
to implement the lock() operation, and the unlock() operation is simply an 
ordinary store instruction. 

2.29.2 [10] <2.11> Repeat problem 2.29.1, but this time use ll/sc to perform an 
atomic update of the shvar variable directly, without using lock() and unlock(). 
Note that in this problem there is no variable lk.
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2.29.3 [10] <2.11> Compare the best-case performance of your code from 
2.29.1 and 2.29.2, assuming that each instruction takes one cycle to execute. Note: 
best-case means that ll/sc always succeeds, the lock is always free when we want 
to lock(), and if there is a branch we take the path that completes the operation 
with fewer executed instructions. 

2.29.4 [10] <2.11> Using your code from 2.29.2 as an example, explain what 
happens when two processors begin to execute this critical section at the same 
time, assuming that each processor executes exactly one instruction per cycle. 

2.29.5 [10] <2.11> Explain why in your code from 2.29.2 register $a1 contains 
the address of variable shvar and not the value of that variable, and why register 
$a2 contains the value of variable x and not its address. 

2.29.6 [10] <2.11> If we want to atomically perform the same operation on two 
shared variables (e.g., shvar1 and shvar2) in the same critical section, we can do 
this easily using the approach from 2.29.1 (simply put both updates between the 
lock operation and the corresponding unlock operation). Explain why we cannot 
do this using the approach from 2.29.2., i.e., why we cannot use ll/sc to access 
both shared variables in a way that guarantees that both updates are executed 
together as a single atomic operation. 

Exercise 2.30
Assembler pseudoinstructions are not a part of the MIPS instruction set, but often 
appear in MIPS programs. The table below contains some MIPS pseudoinstructions 
that ,when assembled, are translated to other MIPS assembly instructions. 

a. move $t1, $t2

b. beq $t1, small, LOOP

2.30.1 [5] <2.12> For each pseudo instruction in the table above, produce a 
minimal sequence of actual MIPS instructions to accomplish the same thing. You 
may need to use temporary registers in some cases. In the table large refers to a 
number that requires 32 bits to represent and small to a number that can fi t into 
16 bits. 

The table below contains some MIPS pseudoinstructions, that when assembled, are 
translated to other MIPS assembly instructions. 

a. la $s0, v

b. blt $a0, $v0, Loop
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210 Chapter 2 Instructions: Language of the Computer

2.30.2 [5] <2.12> Does the instruction in the table above need to be edited 
during the link phase? Why?

Exercise 2.31
The table below contains the link-level details of two different procedures. In this 
exercise, you will be taking the place of the linker.

a. Procedure A Procedure B 

Text
Segment

Address Instruction Text
Segment

Address Instruction

0 lw $a0, 0($gp) 0 sw $a1, 0($gp) 

4 jal 0 4 jal 0

… … … …

Data
Segment

0 (X) Data
Segment

0 (Y)

… … … …

Relocation 
Info

Address Instruction Type Dependency Relocation 
Info

Address Instruction Type Dependency

0 lw X 0 sw Y

4 jai B 4 jal A

Symbol
Table

Address Symbol Symbol
Table

Address Symbol

— X — Y

— B — A

b. Procedure A Procedure B 

Text
Segment

Address Instruction Text
Segment

Address Instruction

0 lui $at, 0 0 sw $a0, 0($gp)

4 ori $a0, $at, 0 4 jmp 0

8 jal 0 … …

… … 0x180 jr $ra

… …

Data
Segment

0 (X) Data
Segment

0 (Y)

… … … …

Relocation 
Info

Address Instruction Type Dependency Relocation 
Info

Address Instruction Type Dependency

0 lui X 0 sw Y

4 ori X 4 jmp FOO

8 jal B

Symbol
Table

Address Symbol Symbol
Table

Address Symbol

— X — Y

— B 0x180 FOO
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2.31.1 [5] <2.12> Link the object fi les above to form the executable fi le header. 
Assume that Procedure A has a text size of 0x140, data size of 0x40 and Procedure B 
has a text size of 0x300 and data size of 0x50. Also assume the memory allocation 
strategy as shown in Figure 2.13. 

2.31.2 [5] <2.12> What limitations, if any, are there on the size of an executable? 

2.31.3 [5] <2.12> Given your understanding of the limitations of branch and 
jump instructions, why might an assembler have problems directly implementing 
branch and jump instructions in an object fi le? 

Exercise 2.32 
The fi rst three problems in this exercise assume that function swap, instead of the 
code in Figure 2.24, is defi ned in C as follows: 

a. void swap(int v[], int k, int j){
  int temp;
  temp=v[k];
  v[k]=v[j];
  v[j]=temp; 
}

b. void swap(int *p){
  int temp;
  temp=*p;
  *p=*(p+1);
  *(p+1)=*p; 
}

2.32.1 [10] <2.13> Translate this function into MIPS assembler code. 

2.32.2 [5] <2.13> What needs to change in the sort function? 

2.32.3 [5] <2.13> If we were sorting 8-bit bytes, not 32-bit words, how would 
your MIPS code for swap in 2.32.1 change?

For the remaining three problems in this exercise, we assume that the sort function 
from Figure 2.27 is changed in the following way: 

a. Use s-registers instead of t-registers.

b. Use the bltz (branch on less than zero) instruction instead of slt and bne at the for2tst label.

2.32.4 [5] <2.13> Does this change affect the code for saving and restoring 
registers in Figure 2.27?
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212 Chapter 2 Instructions: Language of the Computer

2.32.5 [10] <2.13> When sorting a 10-element array that was already sorted, 
how many more (or fewer) instructions are executed as a result of this change? 

2.32.6 [10] <2.13> When sorting a 10-element array that was sorted in descending 
order (opposite of the order that sort() creates), how many more (or fewer) 
instructions are executed as a result of this change? 

Exercise 2.33 
The problems in this exercise refer to the following function, given as array code: 

a. int fi nd(int a[], int n, int x){
  int i; 
  for(i=0;i!=n;i++)
    if(a[i]==x) 
      return i; 
  return –1;
}

b. int count(int a[], int n, int x){
  int res=0;
  int i;
  for(i=0;i!=n;i++)
    if(a[i]==x)
      res=res+1;
  return res;
}

2.33.1 [10] <2.14> Translate this function into MIPS assembly. 

2.33.2 [10] <2.14> Convert this function into pointer-based code (in C). 

2.33.3 [10] <2.14> Translate your pointer-based C code from 2.33.2 into MIPS 
assembly. 

2.33.4 [5] <2.14> Compare the worst-case number of executed instructions per 
nonlast loop iteration in your array-based code from 2.33.1 and your pointer-based 
code from 2.33.3. Note: the worst-case occurs when branch conditions are such 
that the longest path through the code is taken, i.e., if there is an if statement, the 
result of the condition check is such that the path with more instructions is taken. 
However, if the result of the condition check would cause the loop to exit, then we 
assume that the path that keeps us in the loop is taken. 

2.33.5 [5] <2.14> Compare the number of temporary registers (t-registers) 
needed for your array-based code from 2.33.1 and for your pointer-based code 
from 2.33.3. 
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2.33.6 [5] <2.14> What would change in your answer from 2.33.4 if registers 
$t0-$t7 and $a0-$a3 in the MIPS calling convention were all callee-saved, just 
like $s0-$s7? 

Exercise 2.34 
The table below contains ARM assembly code. In the following problems, you will 
translate ARM assembly code to MIPS.

a.         MOV    r0, #10           ;init loop counter to 10 
LOOP:   ADD    r0, r1            ;add r1 to r0
        SUBS   r0, 1             ;decrement counter
        BNE    LOOP              ;if Z=0 repeat loop

b.         ROR    r1, r2, #4        ;r1 = r23:0 concatenated with r231:4 

2.34.1 [5] <2.16> For the table above, translate this ARM assembly code to MIPS 
assembly code. Assume that ARM registers r0, r1, and r2 hold the same values as 
MIPS registers $s0, $s1, and $s2, respectively. Use MIPS temporary registers 
($t0, etc.) where necessary. 

2.34.2 [5] <2.16> For the ARM assembly instructions in the table above, show 
the bit fi elds that represent the ARM instructions. 

The table below contains MIPS assembly code. In the following problems, you will 
translate MIPS assembly code to ARM. 

a. slt $t0, $s0, $s1
blt $t0, $0, FARAWAY

b. add $s0, $s1, $s2

2.34.3 [5] <2.16> For the table above, fi nd the ARM assembly code that 
corresponds to the sequence of MIPS assembly code. 

2.34.4 [5] <2.16> Show the bit fi elds that represent the ARM assembly code. 

Exercise 2.35 
The ARM processor has a few different addressing modes that are not supported in 
MIPS. The following problems explore these new addressing modes. 

a. LDR    r0, [r1]           ; r0 = memory[r1]

b. LDMIA  r0, {r1, r2, r4}    ; r1 = memory[r0], r2 = memory[r0+4]
; r4 = memory[r0+8]
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214 Chapter 2 Instructions: Language of the Computer

2.35.1 [5] <2.16> Identify the type of addressing mode of the ARM assembly 
instructions in the table above. 

2.35.2 [5] <2.16> For the ARM assembly instructions above, write a sequence of 
MIPS assembly instructions to accomplish the same data transfer. 

In the following problems, you will compare code written using the ARM and MIPS 
instruction sets. The following table shows code written in the ARM instruction 
set.

a.         LDR   r0, =Table1        ;load base address of table
        LDR   r1, #100           ;initialize loop counter
        EOR   r2, r2, r2         ;clear r2
ADDLP:  LDR   r4, [r0]           ;get fi rst addition operand
        ADD   r2, r2, r4         ;add to r2
        ADD   r0, r0, #4         ;increment to next table element
        SUBS  r1, r1, #1         ;decrement loop counter
        BNE   ADDLP              ;if loop counter != 0, go to ADDLP 

b.         ROR    r1, r2, #4        ;r1 = r23:0 concatenated with r231:4 

2.35.3 [10] <2.16> For the ARM assembly code above, write an equivalent MIPS 
assembly code routine. 

2.35.4 [5] <2.16> What is the total number of ARM assembly instructions 
required to execute the code? What is the total number of MIPS assembly 
instructions required to execute the code? 

2.35.5 [5] <2.16> Assuming that the average CPI of the MIPS assembly routine is 
the same as the average CPI of the ARM assembly routine, and the MIPS processor 
has an operation frequency that is 1.5 times the ARM processor, how much faster 
is the ARM processor than the MIPS processor? 

Exercise 2.36 
The ARM processor has an interesting way of supporting immediate constants. 
This exercise investigates those differences. The following table contains ARM 
instructions. 

a. ADD, r3, r2, r1, LSL #3   ;r3 = r2 + (r1 << 3)

b. ADD, r3, r2, r1, ROR #3   ;r3 = r2 + (r1, rotated_right 3 bits)

2.36.1 [5] <2.16> Write the equivalent MIPS code for the ARM assembly code 
above. 
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2.36.2 [5] <2.16> If the register R1 had the constant value of 8, rewrite your 
MIPS code to minimize the number of MIPS assembly instructions needed. 

2.36.3 [5] <2.16> If the register R1 had the constant value of 0x06000000, rewrite 
your MIPS code to minimize the number of MIPS assembly instructions needed. 

The following table contains MIPS instructions.

a. addi r3, r2, 0x1

b. addi r3, r2, 0x8000

2.36.4 [5] <2.16> For the MIPS assembly code above, write the equivalent ARM 
assembly code. 

Exercise 2.37 
This exercise explores the differences between the MIPS and x86 instruction sets. 
The following table contains x86 assembly code. 

a.         mov edx, [esi+4*ebx] 

b. START:  mov  ax, 00101100b
        mov  cx, 00000011b
        mov  bx, 11110000b
        and  ax, bx
        or   ax, cx 

2.37.1 [10] <2.17> Write pseudo code for the given routine.

2.37.2 [10] <2.17> What is the equivalent MIPS for the given routine?

The following table contains x86 assembly instructions. 

a. mov edx, [esi+4*ebx]

b. add  eax, 0x12345678

2.37.3 [5] <2.17> For each assembly instruction, show the size of each of the 
bit fi elds that represent the instruction. Treat the label MY_FUNCTION as a 32-bit 
constant. 

2.37.4 [10] <2.17> Write equivalent MIPS assembly statements.
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216 Chapter 2 Instructions: Language of the Computer

Exercise 2.38 
The x86 instruction set includes the REP prefi x that causes the instruction to be 
repeated a given number of times or until a condition is satisfi ed. The fi rst three 
problems in this exercise refer to the following x86 instruction:

Instruction Interpretation 

a. REP MOVSB Repeat until ECX is zero:
Mem8[EDI]=Mem8[ESI], EDI=EDI+1, ESI=ESI+1, ECX=ECX–1

b. REP MOVSD Repeat until ECX is zero:
Mem32[EDI]=Mem32[ESI], EDI=EDI+4, ESI=ESI+4, ECX=ECX–1

2.38.1 [5] <2.17> What would be a typical use for this instruction? 

2.38.2 [5] <2.17> Write MIPS code that performs the same operation, assuming 
that $a0 corresponds to ECX, $a1 to EDI, $a2 to ESI, and $a3 to EAX. 

2.38.3 [5] <2.17> If the x86 instruction takes one cycle to read memory, one 
cycle to write memory, and one cycle for each register update, and if MIPS takes 
one cycle per instruction, what is the speed-up of using this x86 instruction instead 
of the equivalent MIPS code when ECX is very large? Assume that the clock cycle 
time for x86 and MIPS is the same.

The remaining three problems in this exercise refer to the following function, given 
in both C and x86 assembly. For each x86 instruction, we also show its length in the 
x86 variable-length instruction format and the interpretation (what the instruction 
does). Note that the x86 architecture has very few registers compared to MIPS, and 
as a result the x86 calling convention is to push all arguments onto the stack. The 
return value of an x86 function is passed back to the caller in the EAX register.

C code x86 code 

a. int f(int a, int b){
  return a+b; 
} 

f: push %ebp          ; 1B, push %ebp to stack
   mov %esp,%ebp      ; 2B, move %esp to %ebp
   mov 0xc(%ebp),%eax ; 3B, load 2nd arg to %eax
   add 0x8(%ebp),%eax ; 3B, add 1st arg to %eax
   pop %ebp           ; 1B, restore %ebp
   ret                ; 1B, return 

b. void f(int *a, int *b){
  *a=*a+*b;
  *b=*a;
} 

f: push %ebp          ; 1B, push %ebp to stack
   mov %esp,%ebp      ; 2B, move %esp to %ebp
   mov 8(%ebp),%eax   ; 3B, load 1st arg into %eax
   mov 12(%ebp),%ecx  ; 3B, load 2nd arg into %ecx
   mov (%eax),%edx    ; 2B, load *a into %edx
   add (%ecx),%edx    ; 2B, add *b to %edx
   mov %edx,(%eax)    ; 2B, store %edx to *a
   mov %edx,(%ecx)    ; 2B, store %edx to *b
   pop %ebp           ; 1B, restore %ebp
   ret                ; 1B, return
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2.38.4 [5] <2.17> Translate this function into MIPS assembly. Compare the size 
(how many bytes of instruction memory are needed) for this x86 code and for your 
MIPS code. 

2.38.5 [5] <2.17> If the processor can execute two instructions per cycle, it must 
at least be able to read two consecutive instructions in each cycle. Explain how it 
would be done in MIPS and how it would be done in x86. 

2.38.6 [5] <2.17> If each MIPS instruction takes one cycle, and if each x86 
instruction takes one cycle plus a cycle for each memory read or write it has to 
perform, what is the speed-up of using x86 instead of MIPS? Assume that the clock 
cycle time is the same in both x86 and MIPS, and that the execution takes the 
shortest possible path through the function (i.e., every loop is exited immediately 
and every if statement takes the direction that leads toward the return from the 
function). Note that x86 ret instruction reads the return address from the stack.

Exercise 2.39
The CPI of the different instruction types is given in the following table.

 Arithmetic Load/Store Branch

a. 2 10 3

b. 1 10 4

2.39.1 [5] <2.18> Assume the following instruction breakdown given for 
executing a given program: 

Instructions (in millions) 

Arithmetic 500

Load/Store 300

Branch 100

What is the execution time for the processor if the operation frequency is 5 GHz?

2.39.2 [5] <2.18> Suppose that new, more powerful arithmetic instructions are 
added to the instruction set. On average, through the use of these more powerful 
arithmetic instructions, we can reduce the number of arithmetic instructions 
needed to execute a program by 25%, and the cost of increasing the clock cycle 
time by only 10%. Is this a good design choice? Why?
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218 Chapter 2 Instructions: Language of the Computer

2.39.3 [5] <2.18> Suppose that we fi nd a way to double the performance of 
arithmetic instructions? What is the overall speed-up of our machine? What if we 
fi nd a way to improve the performance of arithmetic instructions by 10 times!? 

The following table shows the proportions of instruction execution for the different 
instruction types.

 Arithmetic Load/Store Branch

a. 60% 20% 20%

b. 80% 15% 5%

2.39.4 [5] <2.18> Given the instruction mix above and the assumption that an 
arithmetic instruction requires 2 cycles, a load/store instruction takes 6 cycles, and 
a branch instruction takes 3 cycles, fi nd the average CPI. 

2.39.5 [5] <2.18> For a 25% improvement in performance, how many cycles, on 
average, may an arithmetic instruction take if load/store and branch instructions 
are not improved at all? 

2.39.6 [5] <2.18> For a 50% improvement in performance, how many cycles, on 
average, may an arithmetic instruction take if load/store and branch instructions 
are not improved at all? 

Exercise 2.40
The fi rst three problems in this exercise refer to the following function, given in 
MIPS assembly. Unfortunately, the programmer of this function has fallen prey to 
the pitfall of assuming that MIPS is a word-addressed machine, but in fact MIPS 
is byte addressed.

a. ; int f(int a[], int n, int x);
f:  move $v0,$zero   ; ret=0
    move $t0,$zero   ; i=0
L:  add  $t1,$t0,$a0 ; &(a[i])
    lw   $t1,0($t1)  ; read a[i]
    bne  $t1,$a2,S   ; if(a[i]==x) 
    addi $v0,$v0,1   ;   ret++;
S:  addi $t0,$t0,1   ; i++
    bne  $t0,$a1,L   ; repeat if i!=n
    jr   $ra         ; return ret 
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b. ; void f(int *a, int *b, int n);
f: move $t0,$a0      ; p=a
   move $t1,$a1      ; q=b
   add  $t2,$a2,$a0  ; &(a[n])
L: lw   $t3,0($t0)   ; read *p
   lw   $t4,0($t1)   ; read *q
   add  $t3,$t3,$t4  ; *p+*q
   sw   $t3,0($t0)   ; *p=*p+*q
   addi $t0,$t0,1    ; p=p+1
   addi $t1,$t1,1    ; q=q+1
   bne  $t0,$t2,L    ; repeat if p!=&(a[n])
   jr   $ra          ; return

Note that in MIPS assembly the “;” character denotes that the remainder of the line 
is a comment. 

2.40.1 [5] <2.18> The MIPS architecture requires word-sized accesses (lw and 
sw) to be word-aligned, i.e. the lowermost 2 bits of the address must both be zero. If 
an address is not word-aligned, the processor raises a “bus error” exception. Explain 
how this alignment requirement affects the execution of this function. 

2.40.2 [5] <2.18> If “a” was a pointer to the beginning of an array of one-byte 
elements, and if we replaced lw and sw with lb (load byte) and sb (store byte), 
respectively, would this function be correct? Note: lb reads a byte from memory, 
sign-extends it, and places it into the destination register, while sb stores the least-
signifi cant byte of the register into memory. 

2.40.3 [5] <2.18> Change this code to make it correct for 32-bit integers. 

The remaining three problems in this exercise refer to a program that allocates 
memory for an array, fi lls the array with some numbers, calls the sort function 
from Figure 2.27, and then prints out the array. The main function of the program 
is as follows (given as both C and MIPS code):

main code in C MIPS version of the main code

main(){
  int *v;
  int n=5;
  v=my_alloc(5);
  my_init(v,n);
sort(v,n); 
. 
. 
.

main:
li    $s0,5  
move  $a0,$s0 
jal   my_alloc 
move  $s1,$v0 
move  $a0,$s1 
move  $a1,$s0 
jal   my_init 
move  $a0,$s1 
move  $a1,$s0 
jal   sort
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The my_alloc function is defi ned as follows (given as both C and MIPS code). 
Note that the programmer of this function has fallen prey to the pitfall of using a 
pointer to an automatic variable arr outside the function in which it is defi ned.

my_alloc in C MIPS code for my_alloc

int *my_alloc(int n){
  int arr[n];
  return arr;
}

my_alloc:
  addu   $sp,$sp,–4  ; Push
  sw     $fp,0($sp)  ; $fp to stack
  move   $fp,$sp     ; Save $sp in $fp
  sll    $t0,$a0,2   ; We need 4*n bytes
  sub    $sp,$sp,$t0 ; Make room for arr
  move   $v0,$sp     ; Return address of arr
  move   $sp,$fp     ; Restore $sp from $fp
  lw     $fp,0(sp)   ; Pop $fp
  addiu  $sp,$sp,4   ; from stack
  jr     ra

The my_init function is defi ned as follows (MIPS code):

a. my_init:
   move   $t0,$zero    ; i=0
   move   $t1,$a0
L: sw     $zero,0($t1) ; v[i]=0
   addiu  $t1,$t1,4
   addiu  $t0,$t0,1    ; i=i+1
   bne    $t0,$a1,L    ; until i==n
   jr     $ra

b. my_init:
   move   $t0,$zero    ; i=0
   move   $t1,$a0
L: sub    $t2,$a1,$t0
   sw     $t2,0($t1)   ; a[i]=n-i
   addiu  $t1,$t1,4
   addiu  $t0,$t0,1    ; i=i+1;
   bne    $t0,$a1,L    ; until i==n
   jr     $ra

2.40.4 [5] <2.18> What are the contents (values of all fi ve elements) of array v 
right before the “jal sort” instruction in the main code is executed? 

2.40.5 [15] <2.18, 2.13> What are the contents of array v right before the sort 
function enters its outer loop for the fi rst time? Assume that registers $sp, $s0, $s1, 
$s2, and $s3 have values of 0x1000, 20, 40, 7, and 1, respectively, at the beginning 
of the main code (right before “li $s0, 5” is executed). 

2.40.6 [10] <2.18, 2.13> What are the contents of the 5-element array pointed by 
v right after “jal sort” returns to the main code? 
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§2.2, page 80: MIPS, C, Java
§2.3, page 87: 2) Very slow
§2.4, page 93: 3) –8ten
§2.5, page 101: 4) sub $s2, $s0, $s1
§2.6, page 104: Both. AND with a mask pattern of 1s will leaves 0s everywhere but 
the desired fi eld. Shifting left by the right amount removes the bits from the left of 
the fi eld. Shifting right by the appropriate amount puts the fi eld into the right most 
bits of the word, with 0s in the rest of the word. Note that AND leaves the fi eld 
where it was originally, and the shift pair moves the fi eld into the rightmost part 
of the word.
§2.7, page 111: I. All are true. II. 1).
§2.8, page 122: Both are true.
§2.9, page 127: I. 2) II. 3)
§2.10, page 136: I. 4) +-128K. II. 6) a block of 256M. III. 4) sll
§2.11, page 139: Both are true.
§2.12, page 148: 4) Machine independence.

Answers to 
Check Yourself
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