Compiling Image Processing Applications to Reconfigurable
Hardware *

Robert Rinker, Jeff Hammes, Walid A. Najjar, Wim Bohm, Bruce Draper
Computer Science Department
Colorado State University
Ft. Collins, CO 80523-1873

{rinkerr,hammes,najjar,bohm,draper} @cs.colostate.edu

Abstract

This paper describes the compilation of high-level language programs written in o single-
assignment language called SA-C into the binary codes used for programming reconfigurable
hardware. The primary application domain is image processing. The paper describes the
SA-C language, the compiler and the optimizations it performs, the process of converting
the intermediate form called dataflow graphs into VHDL, and the generation of hardware
configuration codes. Performance data on a typical image processing program, written in
SA-C and executed on a reconfigurable computing system, is presented and compared to a
hand-written VHDL version and a C version running on conventional processors.

1: Introduction

This paper presents a complete compilation path from an algorithmic programming lan-
guage, SA-C, to a reconfigurable computing system (RCS). SA-C has been designed to ex-
press Image Processing (IP) applications on a high level, while being amenable to efficient
compilation to fine grain parallel hardware systems. Reconfigurable computing systems
are typically based on FPGAs, which are large arrays of programmable logic cells and in-
terconnections. Multiple FPGAs, local memories, and interface hardware are packaged as
co-processor boards. For most reconfigurable systems today, the task of programming and
compiling applications consists of partitioning the algorithm between a host processor and
reconfigurable modules, and devising ways of producing efficient FPGA configurations for
each piece of code. FPGAs are programmed in hardware description languages (HDLs),
such as VHDL or Verilog. While such languages are suitable for chip design, they are not
well suited for the kind of algorithmic expression that takes place in applications program-
ming.

Applications that may benefit from the use of reconfigurable systems are those that
exhibit regular and stream-oriented high bandwidth behavior. IP applications fit this cate-
gory, as they feature large, regular image data structures with regular access patterns and
can benefit tremendously from parallel implementations. To bring reconfigurable comput-
ing to applications programmers, the Cameron Project [7] has created a high level algorith-
mic programming language, SA-C, which can be mapped automatically to reconfigurable

This work is supported by DARPA under US Air Force Research Laboratory contract F33615-98-C-1319.

hardware. The SA-C language is hardware independent, but still is able to be mapped to

reconfigurable hardware. It allows easy extraction of fine grain parallelism, and the results
can be optimized to minimize hardware space and execution time.

The compilation, simulation and execu-

tion path, shown in Figure 1, uses data de-

pendence analysis for optimizations. Code
partitioning between host and RCS is di-

DFﬁ"“j‘f”DZ = '.S‘ynp//'ny rected by the user. The RCS part is con-
~ P verted to dataflow graphs (DFGs) that are
e then translated via VHDL to FPGA codes.
r;,,x . The system allows executable code to be
generated at various stages of the compi-
lation process for validation and simulation
Res purposes. The end result of the compilation
process consists of host code, host/RCS in-
terface code, and RCS configuration codes.
The rest of this paper is structured as fol-
lows. Section two introduces the SA-C lan-
guage, and section three describes dataflow
graphs. Section four discusses an abstract target machine model and presents the trans-
lation of dataflow graphs to the VHDL code implementing this abstract machine. Section
five discusses optimizations and pragmas to improve code size, to fit the computation on
the FPGA hardware, and to improve execution time. Section six presents the compilation
path and the behavior of an IP relevant example code. Section seven concludes.

SA-C

SA-C
Compiler

Library

Executable

Figure 1. System overview

2: The SA-C Language

The Cameron Project has created the high level language SA-C (derived from “single-
assignment C,” but pronounced “sassy”) for compilation to reconfigurable hardware. The
design goals are single-assignment, for easy compiler analysis and translation to DFGs;
no pointer arithmetic, for easy compiler analysis; high-level reduction operators for IP ap-
plications; variable bit-width data types for efficient use of FPGA space; and user control
of optimizations. SA-C draws ideas from a number of languages. The general syntax is
derived, as much as possible, from C; powerful multi-dimensional array capability is drawn
from Fortran 90; SA-C’s loop generators are inspired by Sisal [9].

Data types in SA-C include signed and unsigned integers and fixed point numbers, with
user-specified bit widths. For example, a uint8 is an 8-bit unsigned type, whereas a fix12.4
is a fixed point type with a sign bit, seven whole number bits and four fractional bits. SA-
C also has float and double types that hold 32- and 64-bit values, respectively. There
is also a bool type, a bits type that can hold non-numeric bit vectors, and complex
types composed of the language’s signed numeric types. Since SA-C is a single-assignment
language, a variable is declared and given a value simultaneously. For example,

uintl2 ¢ = a + b;

gives ¢ both its type and its value.
SA-C has multidimensional rectangular arrays whose extents are determined dynamically
during program execution. (A user may specify any array’s extents statically, however.)

int14 M][:,6] is a declaration of a matrix M of 14-bit signed integers. The left dimension
is determined dynamically; the right dimension is specified by the user to be six. Arrays in
SA-C can be sectioned or sliced using a syntax similar to Fortran 90: the expression A[:,i]
for example returns the ith column of array A.

The most important part of SA-C is its treatment of for loops. A loop in SA-C re-
turns one or more values (i.e., a loop is an expression), and has three parts: one or more
generators, a loop body and one or more return values. The generators interact closely
with arrays, providing array access expression that is concise for the user and easy for the
compiler to analyze. Most interesting is the window generator, which extracts sub-arrays
from a source array. Here is a median filter written in SA-C:

uint8 R[:,:] =
for window W[3,3] in A {
uint8 med = array_median (W);
} return (array (med));

The for loop is driven by the extraction of 3x3 sub-arrays from array A. All possible 3x3
arrays are taken, one per loop iteration. The loop body takes the median of the sub-array,
using a built-in SA-C operator. The loop returns an array of the median values, whose
shape is derived from the shape of A and the loop’s generator. SA-C’s generators can take
windows, slices and scalar elements from source arrays, making it frequently unnecessary
for source code to do any explicit array indexing whatsoever.

In the complete host scenario, the compiler produces host executable for the entire pro-
gram. In the host/co-processor scenario, the compiler produces host code, host /co-processor
interface code, and the configuration codes for the co-processor. In the second scenario the
compiler transforms bottom-level loops into dataflow graphs (DFGs), suitable for mapping
onto FPGAs. The host code includes interface code that downloads FPGA programs and
source data, and uploads results on the host.

3: Dataflow Graphs

The SA-C compiler translates that part of the program targeted to the reconfigurable
system to dataflow graphs: a low-level, non-hierarchical and asynchronous program rep-
resentation. DFGs can be viewed as abstract hardware circuit diagrams without timing
considerations taken into account. Nodes are operators and edges are data paths. DFGs
are designed to allow token driven simulation, used by the compiler writer and applications
programmer for validation and debugging.

The main node types are arithmetic, low level control (e.g. selective merge), and data
extraction and routing nodes. These nodes reflect window generators driving loops, and

array generators returning values out of loops.
As an example, consider the following SA-C fragment:

int16 H[3,3] = { {-1, 0, 1},
{_1, O, 1}’
{-1, 0, 1} %} ;

int16 R[:,:] = for window W[3,3] in Image {
int16 iph for h in H dot w in W
return(sum(h*w));
} return(array(iph));

This code performs the convolution of a 3 x 3 constant mask H over a larger input array
Image, as one might see in an edge detection routine such as the Prewitt edge detection

algorithm [12].

array array target
adr dimensions adr

I

WIN-2D-GEN

L] 4]

NEG

I

ISUM-MANY

NEG NEG

WRITE-ARRAY-ELE

done

Figure 2. Dataflow Graph

4: Abstract Machine

Image
Memory

Loop Generator

Synchronization
and Control

(inputs)
Data Collector

Result
Memory

Figure 3. Abstract ma-
chine structure

loop
dimensions

F

The dataflow graph for this code is shown in
Figure 2. Both loops of this nested structure are
converted to a single dataflow graph by the SA-C
compiler — i.e., the inner loop has been unrolled.
The Window-Generator node near the top of this
graph reads elements from a 3 x 3 window of the
Image array at each iteration, and as this window
of data flows through the graph, the required con-
volution with H is performed. Notice the multi-
plications explicit in the code have been removed
by the compiler, replaced with either no-ops (for
multiplication by 0 or 1) or negate operations (for
multiplication by —1). Thus, the nine multiplica-
tions and eight additions explicit in the code at
each iteration of the loop have been replaced with
three negation operations and five additions at each
iteration.

Unlike standard processors, which provide a relatively small
set of well-defined instructions to the user, RCS’s are com-
posed of an amorphous mass of logic cells, which can be inter-
connected in many ways. To limit the number of possibilities
available to the compiler, an abstract machine has been de-
fined - this abstract machine provides a hardware independent
model which serves as a reasonable compiler target machine.

The abstract machine model is shown pictorially in Figure
3. The DFG for a SA-C program consists of one or more
data generators, which read data from RCS local memory
and present it in the proper sequence to the main compu-
tational section of the program, called the inner loop body
(ILB). Values that are calculated by the ILB are then “col-
lected” together before being written to memory. The ILB is,
at least at the present time, entirely combinational; all timing
and control of the computation process is handled by the data
generator, with input from the collector.

The DFG to VHDL translation process, therefore, is divided into two main parts. First,
the ILB is identified as being that part of the DFG that lies between the outputs of the
loop generator nodes and the inputs of the data collection nodes. Then, the loop generator
and collection nodes are implemented by selecting the proper VHDL components from a
library, and are parameterized with values extracted from the appropriate DFG nodes.
The interconnections between the ILB and generator/collection components are made by

a top-level VHDL module, which is also generated by the translator.

The translation of the ILB involves a traversal of the dataflow graph. A VHDL component
is created whose inputs are the outputs of the loop generator node, and whose outputs are
the inputs to the data collection node. Many nodes implement simple operations, such
as addition or logical operations; for these nodes, there is a one-to-one correspondence
between DFG node and VHDL statement. For more complicated operations, such as the
SA-C reduction operations like array sum, the translator generates a connection to a VHDL
component. A library of such components has been written directly in VHDL; this allows
a SA-C program access to operators that have efficient direct hardware implementations.
To facilitate the tracing of signals through the ILB, the names of the signals used to
interconnect nodes are derived from the DFG node type and number.

The loop generator is responsible for presenting the proper
data to the input of the ILB and providing the signals nec-
essary to control the operation of the result buffers in the
collector component. Figure 4 illustrates the operation of a
3 x 3 (2-D) window generator. Data read from memory is
placed in a shift register - at each subsequent computation
cycle, the oldest column of data is shifted out, the other
rows are shifted “to the right,” and a new column is shifted
in. This shift register provides a “sliding window” effect -

Input Data

B

o] /g] [7] [
e o
o]] [s

~—
Current Window
Inpuf Data

36
70

g
g [=] [[
ol

S~
Next Window

\\\' 20

Figure 4. Window genera-

at each cycle, the values in the shift register are presented
to the inputs of the ILB.

The collector accepts the ILB outputs, buffers them into
words, and then writes them into the result memory. These
steps are controlled by the window generator - if more than
one value is produced by the ILB, timing signals within the

tor window generator insure that the collector has enough time
to write the data before the next window of data is produced.

5: Optimizations and Pragmas

The SA-C compiler does a variety of optimizations, some traditional and some specifically
designed to suit the language and its reconfigurable hardware targets. The compiler con-
verts the entire SA-C program to an internal dataflow form called “Data Dependence and
Control Flow” (DDCF) graphs, which it uses to perform optimizations. The traditional op-
timizations include Common Subexpression Elimination, Constant Folding, Invariant Code
Motion, and Dead Code Elimination. It also does specialized variants of Loop Stripmining,
Array Value Propagation, Loop Fusion, Loop Unrolling, Function Inlining, Lookup Ta-
bles, Array Blocking and Loop Nextification, as well as a loop and array Size Propagation
Analysis. Some of these interact closely and are now described briefly.

Since SA-C targets FPGAs, the compiler does aggressive Full Loop Unrolling, which
converts a loop to a non-iterative block of code more suitable for translating to a DFG.
To help identify opportunities for unrolling, the compiler propagates array sizes through
the DDCF graph, inferring sizes wherever possible. SA-C’s close association of arrays and
loops makes this possible. Since the compiler converts only bottom-level loops to dataflow
graphs, full loop unrolling can allow a higher-level loop to become a bottom-level loop,

allowing it then to be converted to a DFG.

The SA-C compiler can do Loop Stripmining, which when followed by full loop unrolling
produces the effect of multidimensional partial loop unrolling. For example, a stripmine
pragma, can be added to the median filter:

uint8 R[:,:] =
// PRAGMA (stripmine (6,4))
for window W[3,3] in A {
uint8 med = array_median (W);
} return (array (med));

This wraps the existing loop in a new loop with a 6x4 window generator. Loop Unrolling
then replaces the inner loop with eight median code bodies. The resulting loop takes 6x4
sub-arrays and computes the eight 3x3 medians in parallel.

The SA-C compiler can fuse many loops that have a producer/consumer relationship.
For example, the median filter might be followed by an edge detector, as shown here

uint8 R[:,:] = for window W[3,3] in A {
uint8 med = array_median (W);
} return (array (med));

uint8 S[:,:] = for window W[3,3] in R {
uint8 pix = prewitt (W);
} return (array (pix));

where prewitt is defined by the user as a separate function. The compiler will inline the
function call, and fuse the loops into one new loop that runs a 5x5 window across A. (Note
that a bx5 is the size required to provide the needed elements to compute one value of S.)
The new loop body will have nine median code bodies, and one prewitt code body. The
goal of fusion is primarily to reduce data communication, both host/co-processor board
and local memory /FPGA.

Loop Fusion as described above does redundant computation of medians. If FPGA space
is plentiful, this is not a problem since the medians are computed in parallel, but if space
is tight, Loop Nextification will remove the redundancies in the horizontal dimension by
passing the computed medians from one iteration to the next. In the median filter-edge
detector example, this reduces the loop body to three medians and one prewitt. If, after
nextification, sufficient FPGA space is available, the fused loop can then be stripmined to
reduce the number of iterations.

Lookup tables are often an attractive alternative to repeated computations, when the
table size is feasible. SA-C allows a function to be given a pragma that tells the compiler
to convert the specified function to a lookup table. The compiler computes all possible
values of the function, building them into an array, and it converts all calls to the function
to array lookups.

Though SA-C is a high-level language, it gives users control over the compilation process
through the use of pragmas. The user can control Function Inlining, Loop Fusion, Loop
Unrolling, Array Blocking, Stripmining and Lookup Table Conversion through the use of
pragmas. In addition, the user can create a function prototype that is designated as an
external VHDL plug-in; the SA-C compiler will pass calls to the designated function down
through the DDCF and dataflow graphs, leaving “holes” that can be filled in at low level
with a user’s own VHDL routine.

5.1: Example: Probing

A common approach to automatic target recognition (ATR) is known as probing; it is
a template-based technique for locating and distinguishing specific targets in an image. A
probe is a pair of pixel locations spanning the edge of an object; the probe is “true” if the
difference in pixel values exceeds a threshold. Typically, probes are arranged along the
boundary of a target, and a set of probes defined for a single template is called a probe set.
A target is detected by a template if the number of true probes exceeds a specific threshold.

A single probe set is useful for detecting a target only if the target appears at a fixed ori-
entation and scale. To compensate for this, ATR probing systems generate a hemisphere of
viewpoints around the target, and define a probe set for each view. A naive implementation
of probing scans the image hundreds of times, once for each probe set.

In one such problem there are 365 probe sets. These sets are fixed; therefore they can
be compiled as constants, thereby enabling several compiler optimizations. The code is
rearranged such that a window traverses the image once. For each window location, the
probes in all probe sets are computed, resulting in over 19,500 separate probes, each re-
quiring a subtraction/threshold operation. However, these probe sets have many probes in
common. The compiler’s common subexpression elimination phase finds and removes the
redundant operations, leaving only 5,500 operations. A new optimization further reduces
the number of operations to only 379: it is a kind of common subexpression elimination that
works across loop iterations, detecting situations where a value computed in one iteration
is guaranteed to be the same as a value computed in a later iteration [5]. Special vari-
ables designed to transmit loop-carried dependencies can be used to pass the value across
iterations, thereby eliminating the recomputation.

6: Compilation Path and Applications

Current day reconfigurable computing systems are typically based on FPGAs, which are
large arrays of programmable logic cells, organized into one or more arrays of Configurable
Logic Blocks (CLBs).

One such system is the Wildforce-XL(TM),
built by Annapolis Microsystems[2]. A sim-

S ~
/ Mewory N plified diagram of the board used as a tar-
I get for the compilation system is shown in
CPEO Figure 5 — it consists of five Xilinx 4036XL

{4036x))
[

FPGAs; the PE’s communicate via a 36 bit
crossbar. Each PE has its own local memory.
The board is connected to a host PC via the
PCI bus. Our first implementation uses only
that portion of the board inside the dotted

|

I

|

|
I CROSSBAR

i i I Il i

PE1 } PE2 PE3 PE4
i

(4036xi) |y @o3ex) L] (4036x) L] (4036x)

\ IMOE_;"‘,’,,T;Y III' I“ﬂ,‘?g"ﬁ?l I’g_EsM,ngI MEMonY lines — CPEQ retrieves image data from its
M - local memory and sends it in the proper or-
der over the crossbar to PE1, which buffers

Figure 5. Architecture of the Wildforce- it (using the shift register scheme described
XL Reconfigurable Computing Board earlier), presents it to the top of the ILB,

and stores the results in its local memory.

The design is simplified by using two of the PE memories, thereby eliminating contention
between reading and writing.

The Prewitt edge detection algorithm [12] is a very common operation in IP — it is used
to identify edges in an image. While it is an important algorithm in its own right, it serves
as an example here because it is typical of many common image processing operations. The
algorithm creates a new array of values by performing the convolutions of a pair of fixed
masks with every 3 x 3 sub-array within an image, then finding the magnitude of the vector
formed by the two results. The SA-C program which performs the Prewitt calculation is
shown in Figure 6.

uint8[:,:] prewitt(uint8 Imagel[:,:]) {
int2 H[3,3] = {{-1,-1,-1},

{0, 0, 0},
{1, 1, 1}};
int2 V[3,3] = {{-1, 0, 1},
{-1, 0, 1},
{-1, 0, 1}};

uint8 res[:,:] = for window W[3,3] in Image {
int1l sh, intll sv = for h in H dot w in W dot v in V
return (sum((inti11l)wxh), sum((intll)wkv));
} return (array (magnitude(sh,sv)/8));
} return (res);

uint1ll magnitude(intll a, intll b)
return (sqrt((int22)a*a + (int22)b*b));

Figure 6. The Prewitt edge-detection algorithm, written in SA-C

The SA-C compiler performs several of the optimizations described earlier. Since the
convolutions involve multiplications with 3 x 3 masks that are composed of the constants 1,
0, and —1, the compiler optimizes the calculation to a series of additions and subtractions.
Multiplications with zero are eliminated completely. These optimizations eliminate all
multiplications, and reduce the number of addition/subtractions from 16 down to 10.

The magnitude function is the most expensive part of the ILB, since it involves the squar-
ing of the two results (requiring a multiplication), then finding the square root. An efficient
square root routine is used which uses only shifts, adds, and bit operations. Nonetheless,
the multiply /square-root operation consumes around 75% of the time required by the entire
ILB.

The resulting DFG is processed by the DFG-to-VHDL translator, which extracts the
ILB and translates it directly to VHDL, then selects the appropriate generator and collec-
tor components from the VHDL library, and creates the top-level VHDL program which
“glues” the entire system together. The translator also creates the script files needed by
commercial design tools to compile and place-and-route the VHDL into FPGA configura-
tion codes. These files, along with a compilation script that controls the numerous steps in
the compilation process, fully automate the entire process, from high level language com-
pilation down to the production of FPGA configuration codes and the host-based control
program. The user can execute the entire algorithm on the hardware like any other appli-

Lines | FPGA

H Ezecution Time (mSec) H
Code Entity of | Usage

Image Size 300 x 198 | 665 x 699
Code | CLBS || hata Download | 0.50 3.65
| SA-C Source Code | 19 | Il Computation 25.02 200.36
VHDL Code - PEO Result Upload 0.94 6.12
WINDOW-GEN 572 251 ||l Total time 26.46 210.13

VHDL Code - PE1
WIN-GEN/WRITE-VAL 600 236 ‘

| Computation Rate (MPizels/s) |

Inner Loop Body 3744 281 8
Glue Code & Misc 199 19 Computation 2.37 2.32
Total VHDL 5115 787 Comp + I/0 2.25 2.21

Table 1. Statistics for the Wildforce implementation of the Prewitt algorithm using
the SA-C compiler/translator.

cation (by typing a.out or something similar), without needing to worry about any of the
operational details of the hardware.

Table 1 shows some of the statistics of the entire compilation/translation process. A 19
line SA-C program eventually requires over 5000 lines of VHDL, and occupies approximately
30% of the CLBs in the two FPGAs used in the implementation.

While the main goal of the Cameron Project is to bring the ability to program reconfig-
urable hardware to the application programmer, a natural question concerns performance,
either compared to manual (VHDL) implementation, or to a conventional processor, such
as a Pentium. A single ILB Prewitt design results in an effective processing rate of around 1
MegaPixels/sec. Stripmining the design to 4 x 3, which effectively replicates the ILB twice,
nearly doubles processing rate. A manual implementation on the Wildforce board, which
includes a lookup table for the magnitude calculation, achieves a rate of 4.6 MP /sec. Adding
a single pipeline stage in the ILBs increases this to 5.7. Current compilation research is
studying ways to include lookup tables and pipelining in the ILB. We are optimistic that
the results we can obtain with these efforts will be comparable with those we can achieve
manually.

An implementation of Prewitt, written in C and compiled with optimizations, achieves
a computation rate of 2.19 MP/sec on an 450MHz Pentium. We are encouraged by these
results - implementing the ILB optimizations described above, coupled with execution on
more modern FPGA technology (i.e., Virtex), should allow us to achieve around an order
of magnitude of speedup over conventional processors.

7: Conclusions, Future and Related Work

The main thrust of the Cameron research project is to provide the ease of programming
to reconfigurable systems that applications programmers are used to for conventional ar-
chitectures. This has been achieved for typical IP applications. For example, the Prewitt
algorithm was written, compiled and executed in a matter of hours. This is in contrast to
the days to weeks of development time for VHDL programs. The usefulness and versatility
of SA-C and its optimizing compiler has also been demonstrated by implementing a library

of image processing routines, selected to be representative of the routines in the Vector,
Signal and Image Processing Library[4] and the Intel Image Processing Library [8].

The optimizations currently available in the SA-C compiler have been shown to be highly
effective for the kind of IP codes we have tested.

Future work includes the implementation of lookup tables and ILB pipelining, described
earlier; this will reduce the propagation delay of the overall system, allowing for higher
operating frequencies. Also, we are moving the system onto bigger and more complex
(Xilinx Virtex [13]) FPGA boards, which allows higher clock frequencies and provides on-
chip (RAM Block) memory. This memory can be used for buffering purposes and for
implementation of lookup tables.

In the compiler area, the portion of the language that can be compiled to FPGAs is
being extended. This entails loops with loop carried dependencies, and loop bodies that
generate dynamically sized (e.g. strings) results.

Several other projects are researching reconfigurable computing. Several projects, in-
cluding the Berkeley BRASS Project [3] and the MIT Raw Project [1], are working on
systems that use C to produce codes for custom reconfigurable targets. Other projects are
using common application oriented projects for their source program, including MATCH
[11] (Matlab) and Champion [10] (Khoros). Another project, Defacto [6], uses the SUIF
intermediate form as its input, allowing several high-level languages to be used to produce
reconfigurable code.

References

[1] A. Agarwal, S. Amarasinghe, R. Barua, M. Frank, W. Lee, V. Sarkar, and M. Srikrishna, D.and Taylor.
The RAW compiler project. In Proc. Second SUIF Compiler Workshop, August 1997.

[2] Annapolis Micro Systems, Inc., Annapolis, MD. WILDFORCE Reference Manual, 1997.
WWW.annapmicro.com.

[3] T. J. Callahan and J Wawrzynek. Instruction level parallelism for reconfigurable coprocessor. In
Hartenstein and Keevallik, editors, Springer Lecture Notes in Computer Science Series, 1482. Springer-
Verlag, 1997.

[4] VSIPL Consortium. Vector signal image processing library forum, October 1997. www.vsipl.org.

[5] B. Draper, W. Najjar, W. B6hm, J. Hammes, R. Rinker, C. Ross, M. Chawathe, and J. Bins. Compiling
and optimizing image processing algorithms for FPGA’s. In IEEE Workshop on Computer Architectures
for Machine Perception (CAMP), Oct. 2000.

[6] M. Hall, P. Diniz, K. Bondalapati, H. Zeigler, P. Duncan, R. Jain, and J. Granacki. DEFACTO:
A design environment for adaptive computing technology. In Proc. 6th Reconfigurable Architectures
Workshop (RAW?’99), 1999.

[7] J. Hammes, R. Rinker, W. Béhm, and W. Najjar. Cameron: High level language compilation for
reconfigurable systems. In PACT’99, Oct. 1999.

[8] Intel image processing library, v2.1. support.intel.com/support/performancetools/libraries.
[9] J. McGraw and et al. SISAL: Streams and Iteration in a Single Assignment Language: Reference
Manual Version 1.2. Lawrence Livermore National Laboratory, memo m-146 rev. 1 edition, 1985.

[10] S. Natarajan, B. Levine, C. Tan, D. Newport, and D. Bouldin. Automatic mapping of Khoros-based
applications to adaptive computing systems. Technical report, University of Tennessee, 1999. Available
from http://microsys6.engr.utk.edu:80/ bouldin/darpa/mapld2/mapld_paper.pdf.

[11] S. Periyayacheri, A. Nayak, A. Jones, N. Shenoy, A. Choudhary, and P. Banerjee. Library functions
in reconfigurable hardware for matrix and signal processing operations in MATLAB. In Proc. 11th
IASTED Parallel and Distributed Computing and Systems Conf. (PDCS’99), November 1999.

[12] J. M. S. Prewitt. Object enhancement and extraction. In B. S. Lipkin and A. Rosenfeld, editors,
Picture Processing and Psychopictorics. Academic Press, New York, 1970.

[13] Xilinx, Inc. Virtez 2.5V Field programmable Gate Arrays: Preliminary Product Description, Oct. 1999.
www.xilinx.com.

