
Semi-Nonnegative Matrix Factorization for
Motion Segmentation with Missing Data?

Quanyi Mo and Bruce A. Draper

Colorado State University
{qmo,draper}@cs.colostate.edu

Abstract. Motion segmentation is an old problem that is receiving re-
newed interest because of its role in video analysis. In this paper, we
present a Semi-Nonnegative Matrix Factorization (SNMF)method that
models dense point tracks in terms of their optical flow, and decomposes
sets of point tracks into semantically meaningful motion components. We
show that this formulation of SNMF with missing values outperforms the
state-of-the-art algorithm of Brox and Malik in terms of accuracy on 10-
frame video segments from the Berkeley test set, while being over 100
times faster. We then show how SNMF can be applied to longer videos
using sliding windows. The result is competitive in terms of accuracy
with Brox and Malik’s algorithm, while still being two orders of magni-
tude faster.

Key words: Motion Segmentation, Semi-Nonnegative Matrix Factor-
ization(SNMF), Missing Data

1 Introduction

Motion segmentation is an old and well-studied problem in computer vision that
is finding renewed importance because of its role in video analysis. Put sim-
ply, many video analysis techniques segment moving objects as a precondition
for object, action or event recognition. Unfortunately, video segmentation can
be complicated by multiple independent motions, transient occlusions among
objects, changes in illumination, flexible and/or articulated objects, camera mo-
tions, and related factors. The segmentation challenge is to build a system that
can identify parts of scenes that move consistently with each other over time.

In ECCV 2010, Brox and Malik [1] introduced a new public data set and
experimental protocol for motion segmentation. Their data set, commonly called
the Berkeley Motion Segmentation Dataset, contains multiple videos of varying
lengths, with ground truth segmentations provided for some frames. To focus the
challenge on segmentation, rather than interest point detection or tracking, they
also provide sets of tracked interest points for every video, and an evaluation
mechanism that scores point-based segmentations in terms of their overall error,
average error, over-segmentation error, and density (in case other point tracks

? This work is supported by DARPA Contract W911NF-10-2-0066.

2 Quanyi Mo, Bruce A. Draper

are used). The same paper also introduces a segmentation algorithm based on
spectral clustering that establishes a performance baseline for the data set. They
show that spectral clustering outperforms older, better known methods such as
GPCA[2], LSA[3] ALC[4] and RANSAC, and they challenge other researchers
to produce better algorithms.

This paper accepts Brox and Malik’s challenge. Our first contribution is a
motion segmentation algorithm based on Semi-Nonnegative Matrix Factorization
(SNMF) with missing values. We show that SMNF is more accurate and over
one hundred times faster than the algorithm by Brox and Malik when applied to
10-frame videos (i.e. when applied in evaluation mode 1 in [1]). Unfortunately, as
videos get longer, point tracking fails more often because of occlusions, changes
in lighting, and frame boundaries. As a result, the percent of missing values
grows, and the likelihood of SNMF getting caught in an undesirable local minima
increases. Our second contribution is a sliding window algorithm that uses SNMF
to segment overlapping 10-frame windows of data and spectral clustering to
piece together segments across windows. The result is an algorithm that can
process arbitrarily long videos. On the Berkeley data set it is competitive with
the algorithm by Brox and Malik (within two percent of overall error) while still
being two orders of magnitude faster.

2 Previous Work

The motion segmentation problem has been studied widely by several research
communities, and a full survey of the literature is beyond the current scope.
For the purposes of this paper, we concentrate on two general methods. The
first method approaches motion segmentation as clustering. These techniques
use local information to evaluate trajectory similarities[3][5]. Brox and Malik’s
method falls into this group; they define the distance between trajectories as the
maximum difference of their motion over time. This approach is shown to be ef-
fective in separating moving objects. However, these methods need to construct
an affinity matrix for all trajectories. When the tracked trajectories become
dense, the computational complexity increases quickly. For example, the largest
video in the Berkeley motion segmentation dataset has 163, 266 tracks and re-
quires about 30 hours to be processed. One of the objectives in this paper is to
propose a faster algorithm to solve this trajectory clustering problem.

The other basic approach represents motion segmentation as subspace sepa-
ration. This idea is that recognizable motion patterns often live in one or more
low dimensional subspaces. Vidal et al[2] propose GPCA(Generalized Principle
Component Analysis), an algebraic method to fit a set of polynomials to a point
track after projection into a low dimensional subspace. Alternatively, matrix
factorization methods can be used to construct low rank representations of mo-
tion data[4][6]. Our approach fits in this category. Many matrix factorization
methods require that all trajectories be the same length. However, real world
trajectory data always contains missing values due to occlusion, frame transition

SNMF for Motion Segmentation with Missing Data 3

or tracking failure. While subspace methods are elegant and seem to catch the
essence of motion patterns, dealing with missing data is a key problem to solve.

The previous method closest to ours is NMF (Non-Negative Matrix Factoriza-
tion), as proposed by Cheriyadat et al[7]. They construct a velocity profile matrix
by representing optical flow as velocity magnitudes and angles to fit the NMF
framework. A clever modification is made on Lee et al’s classic NMF method[8]
to handle missing data. However, using representation of velocity magnitude
and angle in a linear model hurts interpretability. In addition, their missing
data handling mechanism is somewhat ad-hoc and lacks rigorous analysis. Ma-
trix factorization with missing data is a famous non-convex problem. While the
length of tracks and the proportion of missing data increases, almost all factor-
ization methods fall into sub-optimal local minima. In contrast, we propose using
matrix factorization methods over short time windows to get stable results and
then propagating information along the timeline. The experimental results show
that this strategy is effective in handling longer videos with more missing data.
We also build our approach on SNMF[9] (rather than NMF), which allow us
to use velocity information directly to build a more natural motion component
representation.

3 Methods

The input to point-based video segmentation is a dense set of points extracted
from frames in a video and tracked over time. The goal is to group together point
tracks that correspond to independently moving objects. Without a priori knowl-
edge, the definition of an independently moving object is somewhat arbitrary.
For example, in a video of a person walking the intuitive result is to segment
the tracks into two groups: one corresponding to points on the person, the other
to points on the background. The person’s arms and legs, however, may display
motion that is significantly different from the motion of the torso. As a result,
it is common to over-segment such videos into multiple regions corresponding
to different body parts. Indeed, over-segmentation may even be desirable if the
goal is to classify human actions. We therefore concentrate on minimizing errors
in which two or more points from different objects are grouped together. Over-
segmentation errors, in which a single object is split into multiple groups, are
reported but considered less important as long as they do not become extreme.

3.1 SNMF for motion segmentation problem

In this paper, we propose a fast Semi-Nonnegative Matrix Factorization (SNMF)
based motion segmentation algorithm for object-level segmentation of videos.
To segment point tracks using SNMF, we represent motion data as a velocity
history matrix. Given a video with F frames and P tracked point trajectories,
the velocity history matrix X is a 2(F − 1)× P matrix:

4 Quanyi Mo, Bruce A. Draper

X =



∆x1
1 ∆x1

2 . . . ∆x1
P

∆y1
1 ∆y1

2 . . . ∆y1
P

...
...

. . .
...

∆xF−1
1 ∆xF−1

2 . . . ∆xF−1
P

∆yF−1
1 ∆yF−1

2 . . . ∆yF−1
P


Here ∆x , ∆y are the x and y coordinates of the displacement vectors of the
points. The subscripts denote the index of the point, while the superscripts
denote the frame number. Hence ∆xm

n represents the displacement in x of point
n from frame m to frame m + 1. X is a 2(F − 1) × P matrix because the last
frame F is not the starting point for any displacement vectors.

Semi-nonnegative matrix factorization (SNMF) factors X into two matrices
F and G so as to minimize an error function J(F,G):

J(F,G) = min
F,G
‖(X − FGT)‖F , G ≥ 0 (1)

where X is the velocity history matrix defined above. F is a 2(F −1)× r compo-
nent matrix in which the rth column is the rth component. In essence, compo-
nents represent trajectories. G is an r×P coefficients matrix. SMNF models the
observed trajectories in X as a sum of components in F , with G providing the
relative weights. The term semi-nonnegative reflects the constraint that while F
is allowed to have negative components, G is constrained to be non-negative. In
a low rank decomposition case, r � min(F, P).

The non-negative constraint on G is based on the common observation that
NMF methods can extract meaningful “parts” of ensemble data[8][10]. The non-
negative constraint on coefficients restricts the linear combination on basis com-
ponents to be “additive” rather than “substractive”. In the motion segmenta-
tion scenario, the relative motion is the natural “part” to be separated from the
ensemble motion data. Here the relative motion can be the foreground object
motion relative from the camera, the relative motion between different objects,
or even between the sub-parts of specific objects. By adding all the relative
motion up we can recover the original ensemble motion data. Based on this con-
sideration, we see SNMF as a promising framework for the motion segmentation
problem.

In the case of missing data, we define a 2(F − 1) × P indicator matrix W
that is 1 in the locations of valid data and 0 in the locations of missing values.
We then seek to minimize:

J(F,G) = min
F,G
‖W ⊗ (X − FGT)‖F , G ≥ 0 (2)

SNMF for Motion Segmentation with Missing Data 5

where ⊗ denotes element-wise multiplication. One of the contributions of this pa-
per is to extend SNMF to explicitly minimize J(F,G) in the presence of missing
data, as in the equation above.

In motion segmentation, columns of F are extracted components and columns
of G are coefficients; F and G form a new representation for the trajectories.
We set the number of columns of G to 3, to get a three dimensional compact
representation for each trajectory.

Algorithm 1 SNMF with missing data
1: Initialize F as a random matrix and G as a random positive matrix respectively.

Iteration for step 2 and step 3 until converge.
2: Updating F by:

R = ((W ⊗X)G)� ((W ⊗ FGT)G) (3)

F = F ⊗R (4)

3: Updating G by:

R1 = ((WT ⊗XT)F)+ + ((WT ⊗GFT)F)− (5)

R2 = ((WT ⊗XT)F)− + ((WT ⊗GFT)F)+ (6)

G = G⊗R1 �R2 (7)

3.2 SNMF with missing data

We propose a new algorithm for SNMF with missing data. The algorithm is an
iterative updating algorithm that alternatively updates F and G to minimize
J(F,G) as given in equation 2. Please see Algorithm 1.

Here the (·)+ and (·)− are the positive and negative parts of a matrix,
defined as:

A+ = (|A|+A)/2, A− = (|A| −A)/2 (8)

Next we derive the update procedure. In every stage of the update procedure we
alter one of F or G to reduce the cost function J(F,G) while fixing the other.
The cost function (equation 2 above) can be transformed as below:

6 Quanyi Mo, Bruce A. Draper

J(F,G) = ‖W ⊗ (X − FGT)‖F
= Tr((W ⊗X)T (W ⊗X)− 2(WT ⊗XT)(W ⊗ FGT) + (WT ⊗GFT)(W ⊗ FGT))

= Const.− 2 Tr((WT ⊗XT)(W ⊗ FGT)) + Tr((WT ⊗GFT)(W ⊗ FGT))
(9)

The second item of (9) can be further transformed by

J2 = Tr((WT ⊗XT)(W ⊗ FGT))

=
n∑

k=1

((WT ⊗XT)(W ⊗ FGT))kk

=
n∑

k=1

m∑
i=1

(WT ⊗XT)ki(W ⊗ FGT)ik

=
m∑

i=1

n∑
k=1

(W ⊗X ⊗W ⊗ FGT)ik

= Tr((WT ⊗WT ⊗XT)FGT)

(10)

The optima of cost function J(F, ·) is obtained at point where ∂J/∂F = 0,
so from (9),(10) we have

∂J(F, ·)
∂F

= −2 (W ⊗W ⊗X)G+
∂Tr((WT ⊗GFT)(W ⊗ FGT))

∂F
= 0 (11)

Similar to (10), we derive the derivative of the third item of (9) as

∂J3

∂Fpq
=
∂Tr((WT ⊗GFT)(W ⊗ FGT))

∂Fpq

=
∂

∑m
i=1

∑n
k=1(W ⊗W ⊗ FGT ⊗ FGT)ik

∂Fpq

=
∂

∑m
i=1

∑n
k=1W

2
ik(FGT)2ik

∂Fpq

(12)

Only the pth row of FGT are related to the Fpq, so we have

∂J3

∂Fpq
=
∂

∑n
k=1W

2
pk(FGT)2pk

∂Fpq

= 2
n∑

k=1

W 2
pk(FGT)pk

∂(FGT)pk

∂Fpq

= 2
n∑

k=1

W 2
pk(FGT)pkGkq

(13)

SNMF for Motion Segmentation with Missing Data 7

In matrices derivation form, that is

∂J3

∂F
= 2(W ⊗W ⊗ FGT)G (14)

So finally we have

∂J(F, ·)
∂F

= −2 (W ⊗W ⊗X)G+ 2(W ⊗W ⊗ FGT)G = 0 (15)

It’s worth noting that when X is a full data matrix (i.e. when. W is all 1s),
∂J(F, ·)/∂F is −2XG+2FGTG, which leads to the standard least square update
formulation[11]. To handle missing data, we modify the optimum condition (15)
to be

F ⊗ ((W ⊗ FGT)G) = F ⊗ ((W ⊗X)G) (16)

which leads to the fixed-point updating rule

F = F ⊗ (W ⊗X)G
(W ⊗ FGT)G

(17)

Here the fraction is element-wise division, which was previously denoted as
� above. It is a fixed point iteration that has limiting solution at the optimum
of the cost function (2).

To derive the updating rule of G, we further solve the optimization problem
with non-negative constraint on G. We combine the above analysis with [9], the
original derivation of SNMF with complete data. We construct the Lagrangian
function L(G) as

L(G) = J(·, G) +
∑
j,k

βkjGkj (18)

Here the J(·, G) follows definition (1). βkj are Lagrangian multipliers that en-
force non-negative. The analysis of ∂J(·, G)/∂G is similar to that of ∂J(F, ·)/∂F .
The optimum condition is given by Kuhn-Tucker conditions:

∂L(G)
∂G

= (−2 (WT ⊗XT)F + 2(WT ⊗GFT)F) + β = 0 (19)

Combine with complementary slackness condition β ⊗G = 0 , we have

(−2 (WT ⊗XT)F + 2(WT ⊗GFT)F)⊗G = 0 (20)

8 Quanyi Mo, Bruce A. Draper

Although (20) is similar to (16), update similar to (17) can not be applied
because of the non-negative constraint. Here we use an update rule similar to
[9] as

G = G⊗ ((WT ⊗XT)F)+ + ((WT ⊗GFT)F)−

((WT ⊗XT)F)− + ((WT ⊗GFT)F)+
(21)

Note that for any matrix A, A = A+ − A− holds. So the cost function
reaches its optimum (20) when (21) converges to limiting solution. G remains
non-negative throughout all update stages.

It’s worth noting that matrix factorization has inherit ambiguity that for any
given factorization X = FGT , there exists a family of equivalent factorization
X = FRR−1GT . Here R can be any invertible matrix. To avoid this ambiguity,
r consecutive rank-1 SNMF steps are performed for rank-r SNMF factorization.
In each step we do rank-1 SNMF (2) in which both F and G are 1-column
matrix. By normalizing F and multiplying back the normalization constant to
G, the factorization ambiguity is avoided. The G obtained can be explained as
”coefficients for the primary motion trend”. Then the Residual X

′
= X−FGT is

feeded into the next step as input data matrix. The obtained r column coefficients
G serves as the new compact r-dimensional trajectory representation.

Fig. 1 shows the extraction result for the proposed SNMF algorithm. The first
row shows four sample frames from the Berkeley motion segmentation dataset.
The second to fourth rows show the value of the first to the third column of
G, which are extracted SNMF coefficients. In each sub-figure, we transform the
magnitude of gi to gray scale values. This illustration clearly shows the extracted
coefficients separate foreground from background, as well as independently mov-
ing objects. The last row shows the actual segmentation performed by standard
K-means clustering.

3.3 Segmentation Propagation

The proposed algorithm produces state-of-the-art results on 10 frame segments
of videos while being two orders of magnitude faster than the algorithm by Brox
and Malik. However, the accuracy drops quickly when the algorithm is used on
longer frame sequences. This is because matrix factorization with missing data is
a difficult non-convex problem, and no method is known that will always find the
global optimum. The alternation optimization procedure we propose converges
to local optima; as the portion of missing data increases and the search dimension
becomes higher, the algorithm more and more frequently falls into local minima.
We therefore propose a method called segmentation propagation. The outline of
this method is listed in Algorithm 2.

The idea behind segmentation propagation is that the point tracker[12] sus-
tains well. The majority of tracked points last longer than 10 frames. So while
SNMF works well on short sequences of data, the segmentation information it
extracts should be able to be propagated across sliding windows by the majority

SNMF for Motion Segmentation with Missing Data 9

Fig. 1. The first row is four sample frame from the Berkeley motion segmentation
dataset. The second to fourth row shows the value of the first to the third column of G,
which are extracted SNMF coefficient. In each sub-figure, we transform the magnitude
of gi to the gray scale value.The last row of sub-figures shows the actual segmentation.

Algorithm 2 Segmentation Propagation
1: Do short time SNMF segmentation in every sliding window.
N = n ∗ t, N : total number of segmentation, n: number of segmentation per time
window, t: number of time window

2: Construct N × N affinity matrix by adding up total segmentation co-occurrence
within every track

3: Do Spectral Clustering to make K segmentation groups
4: Reassign each segmentation with its group labels
5: Within every track of length l (l < t for partial tracks), vote for the most frequent

label as track label

10 Quanyi Mo, Bruce A. Draper

Fig. 2. Sample segmentation results on Tennis by Segmentation Propagation.

of interest points that are tracked through multiple time windows. If many points
inside one time window form a segment and can be tracked into the next time
window and form another segment, there is good chance that the two segments
come from the same object in adjacent time windows. So we build an affinity
matrix of all segments throughout the video by counting co-occurrences of seg-
mentations related to each track. We then merge segments by standard spectral
clustering. Both tracking and segmentation introduce error. It is common for
one track to have different merged segmentation labels in different time interval.
We decide the label of the whole track by voting with winner-take-all rule.

In step 1 of Algorithm 2, we segment the target video into multiple short
time windows. We use 10 frame time windows throughout the experiments in
this paper. In order to introduce better sustainability of trajectories, we start
a 10-frame time window every 5 frames, so every trajectory appears in at least
two time windows. Hence we perform F/5 short-time SNMF segmentations in a
video of length F .

By step 1 we have multiple initial segmentation labels (at least 2) for each
track. In step 2, we construct an N ×N affinity matrix A, where N is the total
number of segments across time and A[i, j] is the number of tracks that occur in
both segments i and j. The co-occurrences do not have to be contiguous in time.
Step 3 does standard spectral clustering based on this affinity matrix to group
initial segmentation to K groups, where K is the number of final segments. In
this paper we set K = 11. As frame length increases, this step becomes the most
time consuming stage since the time complexity of spectral clustering is O(N3).
In step 4, each initial segmentation is re-assigned to its corresponding group
label.

SNMF for Motion Segmentation with Missing Data 11

After step 4, we get t labels for a trajectory that lasts t time windows. Ide-
ally, all segments of a trajectory should be assigned to a single group. However
both tracking and segmentation introduce error. This error can even propagate
through the affinity graph in the clustering stage, so it is common for one tra-
jectory to be assigned to multiple segment groups. In step 5 we simply take the
most frequent assignment to be the final label of the trajectory. Assuming that
SNMF correctly segments most time windows, voting allows the correct segmen-
tations to overwhelm the error. In practice we do observe some short time SNMF
segmentation errors, but most of the errors are suppressed by the winner-take-all
voting strategy. Fig 2 shows sample segmentation results.

4 Experimental Evaluation

In this section we report our result on the Berkeley motion segmentation dataset[1],
following the comparison protocol in [1]. Quantitative results are generated using
tools publicly provided by the authors of [1]. We also report execution speeds
to illustrate the efficiency of our method. We built our new SNMF algorithm
within the framework of Python Matrix Factorization Library(PyML) [13].

The Berkeley motion segmentation dataset contains 26 video sequences, 12
of which were chosen from the Hopkins 155 database[14]. Annotation is provided
for selected frames. Test methods are expected to run in four evaluation modes,
evaluating the first 10, 50, and 200 frames, and evaluating all frames.

In our first experiment, we run the proposed SNMF algorithm directly on 10
frame segmentation(evaluation mode 1). In this case we only have 2 parameters.
We set the number of SNMF bases r = 3, and the number of clusters n =
6. For the other 3 longer comparisons we run the SNMF algorithm with 10
frame windows beginning every 5 frames. The number of final segments in the
segmentation propagating procedure is set to 11.

We first compare our method to the current state-of-the-art method proposed
in [1]. To make a more complete comparison, we also use the performance num-
bers reported in [1] for other contemporary algorithms. They are: Generalized
PCA (GPCA)[2], Local Subspace Affinity (LSA)[3], RANSAC, and Agglomer-
ative Lossy Compression(ALC)[4]. Among them, ALC is the only method that
can deal with incomplete tracks. Table 1 shows the comparison on all four evalu-
ation modes on all 5 evaluation metrics: Density is the number of points on with
segmentation label is reported. We report data on the same point trajectories as
in [14], so we have the same densities as they do. Overall error is the percent of
wrong assigned label over the total number of labeled points. Average error is
similar to the overall error but is averaged across regions. This number are usu-
ally much higher than the overall error because a full penalty of 100% error will
be reported for the region missed by segmentation. Over-segmentation error
is defined as the average number of clusters merged in production above ”pre-
cision” measure versus total number. The last index is number of extracted
objects with less than 10% error. It is a measure of high quality object level
segmentation.

12 Quanyi Mo, Bruce A. Draper

Density εoverall εaverage O.S. E.O.

First 10 frames(26 sequences)

SNMF 3.32% 6.98% 17.45% 3.36 26
Brox & Malik[1] 3.32% 7.66% 25.33% 0.5 24
GPCA 2.98% 14.28% 29.44% 0.65 12
LSA 2.98% 19.69% 39.76% 0.92 6
RANSAC 2.98% 13.39% 26.11% 0.50 15
ALC corrupted 2.98% 7.88% 24.05% 0.15 26
ALC incomplete 3.34% 11.20% 26.73% 0.54 19

Table 1. Evaluation results on 10 frame comparison of all 26 videos in the Berkeley
motion segmentation. Legend: εoverall: overall error; εaverage:average error; O.S: over-
segmentation error; E.O.: extracted foreground region with less than 10% error

Density εoverall εaverage O.S. E.O.

First 50 frames(15 sequences)

our method(combined) 3.26% 9.93% 17.23% 7.20 8
Brox & Malik[1] 3.26% 6.91% 32.45% 0.46 9
ALC corrupted 1.53% 7.91% 42.13% 0.36 8
ALC incomplete 3.26% 16.42% 49.05% 6.07 2

First 200 frames(7 sequences)

our method(combined) 3.43% 8.47% 25.75% 6.85 3
Brox & Malik[1] 3.43% 6.86% 32.03% 2.71 7
ALC corrupted 0.20% 0.00% 74.52% 0.40 1
ALC incomplete 3.43% 19.33% 50.98% 54.57 0

All available frames(26 sequences)

our method(combined) 3.30% 7.41% 23.79% 7.34 23
Brox & Malik [1] 3.30% 6.52% 27.31% 2.07 29
ALC corrupted 0.99% 5.32% 52.76% 0.10 15
ALC incomplete 3.30% 14.93% 43.14% 18.80 5

Table 2. Evaluation results on 50, 200, and all frames of all 26 videos in the Berkeley
motion segmentation. Legend: εoverall: overall error; εaverage:average error; O.S: over-
segmentation error; E.O.: extracted foreground region with less than 10% error

SNMF for Motion Segmentation with Missing Data 13

From table 1 we can see that the proposed SNMF algorithm gets the lowest
overall segmentation error on 10 frame comparisons. For the other 3 compar-
isons(see Table 2), our method(combined) has 1%-3% higher error rate com-
pared to [1] but is still much better than ALC. In all 4 comparisons our method
gets the lowest average segmentation error. Since the major source of average
segmentation error is the penalty for missed ground truth objects, our method
generally tends to produce fewer missing detections. In the number of extracted
objects with less than 10% error comparison, which corresponding to high qual-
ity object level segmentation, SNMF stills wins the 10 frame comparison while
falling behind with [1] in the other three cases. In general, our segmentation
accuracy is comparable to that of [1].

While the proposed method produces competitive segmentation accuracy, it
has a lower over-segmentation error rate than Brox and Malik’s method. How-
ever, their method has two explicit over-segmentation/merge stages while we
don’t perform postpocessing. Also, their method uses spatial location of tra-
jectories to regularize segmentation. In contrast, our method use pure motion
information to perform the segmentation task.

Perhaps the most important advantage of our method is execution speed.
Table 3 and table 4 provide comparisons of sample running speeds of the bench-
marked algorithms. In the 10 frame comparison, we run SNMF algorithm only.
In comparisons involving more frames, we run both SNMF and segmentation
propagation algorithm. It is easy to see from table 3 and table 4 that our meth-
ods is over two orders of magnitude faster than [1]. In addition, our code is
written in Python while Brox and Malik’s code is C++, which gives us every
expectation that our speed can be further improved. All the other algorithms
in Table 3 are much slower, except for RANSAC, which cannot handle missing
data.

tracks time

SNMF 15486 1.36s
Brox & Malik[1] 15486 497s
GPCA 12060 2963s
LSA 12060 38614s
RANSAC 12060 15s
ALC 957 22837s

Table 3. Speed comparison on the
people1 sequence(first 10 frames)
on 6 methods

Sequence People1 Cars4 Tennis Marple7

Tracks 15486 17224 31706 163266
Frames 10 50 200 528
Brox et al’s 497 sec 38 min 98 min 33 hr
Our method 1.36 sec 20.82 sec 132 sec 18 min

Table 4. Speed comparison results on 4 dif-
ferent videos with different frame length

5 Conclusion

In this paper we present two algorithms that efficiently solve motion segmenta-
tion problem with dense, partial tracks. We develop a fast SNMF-based method

14 Quanyi Mo, Bruce A. Draper

that achieves state-of-the-art results on the Berkeley motion segmentation dataset
for short time intervals. We then present a new approach to broadcast local time
interval results along the timeline, achieving similar performance to the best
known methods with two orders of magnitude speed up. In addition, the SNMF
method itself is extended to handle missing data. In this work, only motion
information is used. In the future, postprocessing methods will be explored to
handle additional available information such as spatial location of trajectory and
segments regularity to get even better results for object level segmentation in
video.

References

1. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories.
In: Proceedings of the 11th European conference on Computer vision: Part V,
Springer-Verlag (2010) 282–295

2. Vidal, R., Ma, Y.: A unified algebraic approach to 2-d and 3-d motion segmenta-
tion. In: Proceedings of the 8th European conference on Computer vision, Springer-
Verlag (2004) 1–15

3. Yan, J., Pollefeys, M.: A general framework for motion segmentation: Independent,
articulated, rigid, non-rigid, degenerate and non-degenerate. In: Proceedings of the
9th European conference on Computer vision, Springer-Verlag (2006) 94–106

4. Rao, S., Tron, R., Vidal, R., Ma, Y.: Motion segmentation via robust subspace sep-
aration in the presence of outlying, incomplete, or corrupted trajectories. In: Com-
puter Vision and Pattern Recognition, 2008. IEEE Conference on, IEEE (2008) 1–8

5. Fan, Z., Zhou, J., Wu, Y.: Multibody grouping by inference of multiple subspaces
from high-dimensional data using oriented-frames. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 28 (2006) 91–105

6. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: Computer Vision and
Pattern Recognition, 2009. IEEE Conference on, IEEE (2009) 2790–2797

7. Cheriyadat, A., Radke, R.: Non-negative matrix factorization of partial track data
for motion segmentation. In: Computer Vision, 2009 IEEE 12th International
Conference on, IEEE (2009) 865–872

8. Lee, D., Seung, H., et al.: Learning the parts of objects by non-negative matrix
factorization. Nature 401 (1999) 788–791

9. Ding, C., Li, T., Jordan, M.: Convex and semi-nonnegative matrix factorizations.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 32 (2010) 45–55

10. Hoyer, P.: Non-negative matrix factorization with sparseness constraints. The
Journal of Machine Learning Research 5 (2004) 1457–1469

11. Hartley, R., Schaffalitzky, F.: Powerfactorization: 3d reconstruction with missing
or uncertain data. In: Australia-Japan advanced workshop on computer vision.
Volume 74. (2003) 76–85

12. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by gpu-accelerated
large displacement optical flow. Proceedings of the 11th European conference on
Computer vision (2010) 438–451

13. Thurau, C.: PyMF: Python matrix factorization library. http://code.google.

com/p/pymf/ (2010)
14. Tron, R., Vidal, R.: A benchmark for the comparison of 3-d motion segmentation

algorithms. In: Computer Vision and Pattern Recognition, 2007. IEEE Conference
on, IEEE (2007) 1–8

